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SPINNING CONVEX BODIES WITH APPLICATION TO SATELLITE EXPERIMENTS

Gerald Ray Karr, Ph.D.
Department of .eronautical and Astronautical Engineering
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Abstract

In rarefied gas flow problems there are two effects which influence
the flow; (1) collisions of gas molecules with other gas molecules, and (2)
collisions of gis molecules with solid sux“aces (the gas-surface interaction).
This study deals with free molecular flow in which the effect of gas-gas
collision can bz neglected and the gas-surfacc interaction has the dominate
influence on the flow. The results of this study have application to satel-
lites since free molecular flow conditions occur at orbital altitudes above
120 km.

Knowledge of the gas-surface interaction is required in order to
determine the aerodynamic properties of satellites. At satellite velocities
(7-8 km/sec) the interaction of neutral atmospheric gas molecules with the
satellite surface occurs at energies in the 1 to 10 ev range. It is just
this energy range which has not been satisfactorily duplicated in the labora-
tory; therefore, at .resent, laboratory gas-surface interaction data can not
be applied directly to the determination of the aercdynamic properties of
satellites. It is proposed in this study that satellite experiments be
performed to obtain the needed information from measurements of the aero-

dynamic properties of satellites. In order to interpret the satellite data,
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| ’ a generalized gas-surface intevaction model was developed and used in the
E analysis of this study.
1
z Gas-surface iunteraction models such as those of Maxwell, Schamberg,
—
§L; and Nocilla, contain two or more parameters which may be adjusted to cover a
i
l ri certain range of possible gas-surface interactions. Although such specific

e,
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models may be used to develop the aerodynamic equations of sateilites, the

L—

validity of these models in this application has not been determired. The

results of this study show thacr the proposed gencralized model is necessary

in the interpretation of measured satellite aerodynamic properties.

In the past, the interpretation of measured satellite aerodynamic

fu—s

properties to cobtain information on the gas-surface interaction and orbital

gas density has not been successful for two reasons; (1) the uncertainty in

4
)

) the validity of gas-surface interaction models, and (2) insufficient data to

.

ailow a determination of the orbital gas density and at least two gas-surface
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1
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interaction parameters. The results of this study illustrate strongly the
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feasibility of performing a satellite experiment in which accurate data could

be obtained on the gas density and gas-surface interaction parameters by

o

measuring the drag, spin rate slowdown and spin axis precession rate of a
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spinning convex satellite,
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The results of the study on the aerodynamic properties of spinning
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convex bodies have exhibited a uumber of interesting effects associated with

[( the spin of the body and the gas-surface interaction. For example, the drag

and lift of a spinning body was found to be greater tham that c¢{ a non-spin-

LS I G D AW BT A HP AR

{2 ning body. It w#as also found that there exists a spin induced lateral lift

¥

force which is analogous to the Magnus effect but is opposite in direction.
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In addition, spin induced zerodynamic torques, perpendicular to the spin
axis, are significant on bodies at angles of attack to the flow.

The gas-surface interaction was found to have a strong influence
in determining the aerodynamic properties cf both spinning and non-spinning
bodies., Both analytical and numerical results were obtained for the aero-
dynamic properties of four basic body shapes (disk, cylinder, cone, aad
ﬁ% sphere) to study the effects of spin, angle of attack, and the gas-surface

interaction.
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1. 3INTRODUCTION

In the free molecular flow regime, intermolecular collisions may
be neglected and ihe gas-surface interaction then becomes the dominating
influence in this flow regime. For earth satellites, free molecular con-
ditions exist at all altitudes above 100 mi (161 km.).1 It is therefore
essential that the effect of the gas-surface interaction be considered in
the determination of the aerodynamic properties of satellites.

At satellite veloeities, the gas molecules of the atmosphere im-
pinge on the satellite surface at velocities in the order of 7 to 8 km/sec.
Takiag into account the molecular weight of the molecules composing the
atmesphere, the interaction energy associated with satellite velocities is in
the range of 1 to 10 ev. Laboratory experiments using molecular beam tech-
niques have not been successful in duplicating these interaction erergies.
Therefore, the character of the gas-surface interaction at satellite velo-
cities and thus the effect of the interaction on satellite aerodynamic pro-
perties has not been determined. It has been possible to construct models of
the gas-surface interaction from physical principles and experimental results
obtained for interaction energies less than 1 ev, Such models contain two
or more parameters which may be adjusted to include a certain range of pes-
gible iiteraction. It has not been determined, however, how well these
models approximate the actual gas-surface interaction that occurs in the
satellite environment.

The fact that aerodynamic properties of bodies in a free molecular

flow depend on the gas-surface interaction suggests that measurements o’
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satellite aerodynamic properties could yield information on the gas-surface
interaction., However, measurements of satellite aerodynamic drag have been
inconclusive in determining information on the gas-surface interaction for
two reasons; 1) uncertainties in the satellite environmment; primarily, un-
certainty in the atmospheric density and 2) uncertaiunties in the aerodynamic
properties of satellites and, thus, in the interpretation cf the measure-
ments. Drag measurements really only determine the product of density and
drag coefficients since neither is kpown separately.

The problems with interpreting drag measurements suggest that an
additional aerodynamic property of a satellite should be measured, such as
the slowdown- rate of a spinning catellite, which, when combined with the
drag measurement of that satellite, would provide a means of separating the
effects of density and drag coefficient or gas-surface interaction. Analyses
of this type have been performed on drag and spin rate decay data for paddle-
wheel shaped satellites, from which estimates of the density and a gas-sur-
face interaction parameter were obtained.s’4 These results are, however,
subject to uncertainties which are much the same as those associated with
drag measurements. First, since the measurements cf drag and slowdown rate
were a function of at least three unknowns (orbital gas density and two or
more gas-surface interaction parameters), a value for at least one of the
unknowns had to be assumed in order to obtain estimates of the other two.
Secondly, since the validity of any particular model of the gas-surface inter-
action has not been established, the interpretation of measurements may be

made, as in References 2 and 3, using a2 number of different models.
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Since each model used produces a different estimate of demsity, the experi~
ment is able to determine only a possible ramnge on the density,.

The first point made above suggests that additional aerodynamic
properties should be measured in order to remove the necessity to make
assumptions which can introduce errors in the interprctation of the measure-
ments. There are six aerodynamic properties to he considered corresponding
to three components of fprce and three components of torque acting on a
satellite; however, the properties must nct cnly be measurable but must alse
be independent functions of the quantities to be determined. The free mole-
cular aerodyramic properties (drag, lift, and torque) of non-spinning bodies
are known to depend on the angle of attack of the body and the gazs-surface
interaction (see for example References 5 and 6). For non-spinning satel-
iites, however, the cts of lift and vorque properties cannot be easily
assessed bocause the orientation of the satellite with respect to the flow
is usually upknown and probably random. Spinning satellites, on the other
hand, maintain relatively fixed orientations in space. If the orientation
of the spiF axis of the satellite is known, iL is possipble to determine the
angle ofh;£tack oa the satellite with respect to the flow a2t any position
in the orbit., Tkis suggests, then, that the aerodynamic properties of spin-
nihg satellites may provide the measurables needed ifor determinimg the gas
density and gas-surface interaction parameters.

Past studies of the free molecular aerodynamic properties of
spinning bodies do not, however, provide a sufficient basis for proposing
a satellite experiment such as suggested above. The analysis of aerodynamic

torque on spirning sateilites is usually made on an approximate basis
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considering only the moments of drag forces about the center of mass of the
satellite (see for example References 7, 8) which, in general, do not give a
complete understanding of the influence of the gas-surface interaction,

More exact analyses of the aerodynamic torques have been made in References
9, 10, and 11 for the case of a spinning spherical satellite in which it was
found that the aerodynamic torque properties are strongly dependent upon a
single parameter of a specific gas-surface interaction model.

The objective of this study is to analyze more fully the influence
of the gas-surface interaction on the aerodynamic properties of spinning
bodies and to propose satellite experiments to dccurately determine the gas
density and the gas-surface interaction.

In order to remove uncertainties introduced by a variety of pos-
cible gas-surface interaction models that can be used in such a study and
satellite experiments (second point made avove), a generalized gas-surface
interaction model is developed which is designed to cover a wider range of
possible gas-surface interactions than models currently being used., The
generalized model contains currently accepted models as subclasses and has
the additional advantage of being able to incorporate laboratory results
and models which may be suggested in the future., The description cf this
generalized model is given in chapter 2.

In chapter 3, the generalized model is used to develop the equa-
tions expressing the aerodynamic properties of spinning and non-spinning
bodies in a free molecular flow. The results cbtained may be interpreted
in terms of any of the gas-surface interaction moldels contained as sub-

classes in the general model. The aerodynamic equations are developed in

S o o e LA ST
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a general manner which makes them applicable to bodies of various shapes.

In chapter 4, results are obtained for a disk (or flat plate),
cylinder, cone, and spherz for arbitrary angles of attack and for both the
spinning and non-spinning cases. These results reveal the strong influence
of the gas-surface interaction on the aerodynamic properties of spinning
bodies.

In chapter 5, the azrodynamic properties of spinning satellites
is studied to determine the importance of the gas-surface interaction oa the
average aerodynamic properties of satellites. These results suggest pos-
sibilities for performing satellite experiments. The random tumbling pro-
blem is also studied in this chapter.

In chapter 6, satellite experiments are proposed and the feasi-
bility of performing these experiments is investigated by assessing the
possible accuracy and the magnitude of measurable quantities needed to
determine the unknowns of atmospheric density and gas-surface interaction
parameters,

The feasibility of the proposed satellite experiment is enhanced
by results obtained in a study performed by the Coordinated Science Lab-
oratory pertaining to the measuremenc of satcllite precession rates which
could be caused by a general relativity effect. This study determined that
extremely accurate measurements of even small precession rates are possible
by using a completely passive optical readout techniqie utilizing observa-

tiens of sunlights reflected by the satellite surface.lz’13

On this basis
then, it is proposed that for certain satellite shapes there are at least

three measurable aerodynamic properties (drag, slowdown torque, and
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precession torque) which can be utilized to dectermine wore precisely the

I atmospheric density and the character of the gas-surface interaction at

satellite velocities,
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2. A GENERALIZED GAS-SURFACE INTERACTION MODEL

Insufficient information is available at present to warrant choos-
ing a specific gas-surface interaction model to represent the reflection of
molecules which impinge a surface at satellite velocities. For this reason,
a generalized gas-surface interaction model is developed such that it con-
tains various possible gas-surface interaction models or subclasses includ-
ing the models of Maxwell, Nocilla'lﬁ and Schamberg 15

The generalized model will be used in the development of equations
to express the aerodynamic properties of spinning bodies in subsequent
chapters, The resulting equations have the advantage that they can thea be
interpreted in terms of any of the gas-surface interaction models contained

as subclasses of the general model.

2.1, A Generalized Model for the Interaction

Consider a stream of mono-energetic, *ini-directional neutral gas
molecules impinging upon a solid surface at an angle of 6 with respect to
the plane of the surface (see Figure 2.1). Alsc consider that the molecuies
are all reflected in a beam which is axial symmetric about an axis which
makes an angle 9, with respect to surface, in the plane formed by the imping-

J

ing molecules and the surface normal (see Figure 2.1). The subscript, j,
on ej may take on values of 1,2,3---to represent cases in which the reflec-
tion can be modeled as being composed of two or more beams which are azial
symmetric about axes which make angles with respect to the surface of 61,

8> 63 ----- respectiveiy. The purpose for adding the versatility of
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of using more than one reflected beam will be illustrated later in this
chapter. For the present, however, consider the beam in the ej direction,.
In order to describe the gas-surface interaction, the following
three quantities must be determined about the reflected beam.
1. The velocity.
2. The angle of reflection,
3. The number flux.
The relations of these three quantities with the incident beam properties

are described in the following three sections.

2.1,1, Reflected Velocity

In general, the velocity of individual molecules reflected from
the surface will be digtributed in some arbitrary manner. The distribution
of velocities of a large number of reflected molecules could be, for example,
Maxwellian, or constant (no distribution), or any one of any numerous
possible distributions. For purposes of caleculating the force on the sucface
in free molecular flow, however, the specific distribution of velacities is
not important since once the molecules leave the surface they do not again
hit the surface, and they do not collide with the impinging molecules.

Only the average velocity of the reflected beam is needed in
determining the momentum of reflected molecules and then the force on the
surface., Therefore, a vector velccitypﬁj is defined to represent the
average velocity of the beam of molecules reflected in the direction ef
The velocity ﬁs is also in the direction of ej since the beam is assumed to

be symmetrical in velocity ..stribation about the axis at angle ei'
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In order to relate the magnitude of velocity Uj with the magnitude
- b d
i : of velocity U (velocity of impinging molecules), a parameter aj is introduced,
ot
e where
h U. = Ub/l-a, 2.1
] J
a2
: The parameter ai is defined in this manner to facilitate the
ik .
reduction of the generalized model parameters to the parameter of other
b models. Equation 2.1 iz equivalent to writing
- 2
1 U,
g s . =1~ ——— 2.2
j 2
U
i 4
- which is often referred to as the definition of the thermal accommndation
= coefficient. However, the designation of thermal accommodation coefficient
H
=* is rather vague and ill defined. The thermal accommodation coeffiélent, o,
-
! is also often defined as
-ie
Ti - Tr
Y = - = 2.3
} ; 9 T, - T
. i W
- where Ti is the temperature of the incident gas molecules, Tr is the temper-
% i ature of refiected molecules and Tw is the temperature of tiie surface (wall),
¢ If the temweratures are understood to represent the kinetic temperatures,
(™
and if Tw/Ti << 1 then Equation 2.3 may be written as
+ \9
P 2
P Tr Ur
o~1- T - 1- - 2.4
T i u,
: i
wly

; The right hand side of Equation 2.4 is similar to the definition of ¢, in

o

Equation 2.2 except that Uj in Equation 2.2 represents the average velocity

in the ej direction while the velocity Ur represents the velocity associated
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with Tr’ the temperature of the reflected molecules. The operation in
going from temperature to velocity in Equation 2.4 depends on the distribu-
tion function of reflected molecules and also on the definition of temper-
ature. For thne purposes of this study, Equation 2.2 will be used without

reference to temperature.

2.1.2. Angle of Reflection

The reflection of a beam of molecules from a solid surface was
first considered by Haxwell to be analogous to the reflection of light
from a surface., He postulated that molecules could be reflected elastically
or specularly much as light from a perfect mirror, or the molecules could
reflect diffusively as light does from a rough surface (see Figure 2.2).
Even though this treatment of the angle of reflection may be elementary,
the Maxwell model has found wide applicatioms.

Tn 1959, R, Schamberg15 proposed a gas-surface interaction model
which allowed for reflections at angles between the limits of specular and
diffuse. Schamberg postulated that the angle of reflection should be
related to the angle of incidence of the molecular beam.: As an example of

such a relationship, Schamberg introduced a parameter, vy, defined by
= v,
cos 8, (cos ei) s v>1 2.5

where er is the angle of the reflected beam of molecules and Qi is the angle
of incidence. In the limits of p = 1 and v = », the Schamberg model reduces

to the cases of specular and diffuse angles of reflection respectively,

N e o i g
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Although recent experimental results using molecular beam tech-
niques indicate that Equation 2.5 is not in general correct, experimental
results do indicate that the angle of reflection is a function of the
angle of incidence,(the experimental results will be discussed later in
this chapter). In order to include an angle-o%-reflection law in the
generalized mudel, consider the functional relationship between the angle of

1]
rveflection, 6,, and the angle of incidence, 0, to be in the form of a

J

general polynomial of degree N. That is, let

N
n
ej = aj + n§1 (bj)n ] 2.6
where aj and (bj)n: n=1,2,...N are constant coefficienrs,

As appropriate experimental results become available, the constants
aj and (bj)n can be found by fitting a polynomial to the experimental data.
Since appropriate experimental data is not now available, assume, as a first
approximation, that the functional relationship for the angle of reflection

is linear in . That is, let

. =a,+b, 2.7
@J a; Je

which contains the two unknown constants aj and bj' Unlesgs there is a
systematic irregularity in the surface, the reflection of a moleculie beam
which is incident normal to the surface (6 = g) should also be normal to

the surface(ej = g). Using this reasoning, one of the unknown constants in
Equation 2.8 caa be eliminated to obtaim a functional relationship dependent

upon only one unknown constant, Pj’ where

k1
., =5 P, + (1-P, 2.8
0, =7 B+ (1B 8
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This form of the angle-of-reflection law will be used in later chapters to
illustrate the effect of angle of reflection on the aerodynamic properties

of convex bodies in free molecular flow.

Bomd Gt

2.1.3. Reflected Number Flux

S

If a solid surface is neither a scurce or sink for molecules, the

e a
ety

number flux of reflected molecules must equal the number £flux of incident

molecules. The number flux of incident molecules, ﬁ, is defined as

O KT
FEPE

€ A -

[~ 2%

{=2 U0 2.9
m

Y

L.
Wpornmmet)

=
where p is the density cf the incident gas, n is the unit normal to the

—-—p
surface, and U is the incident velocity with respect to the surface, If

e
gi all the molecules were reflected in a2 single beam, ﬁreflected =N =fg"f1.—r:
» For the generalized model, a parameter Gj’ is introduced which relates the
‘E number flux reflected in the ej beam, ﬁj’ with the incident number £flux.
- ?E Let
N,=o H=o &TF 2.10
; i For cases when all the incident molecules are reflected in the ej direction,
: :{ oj = 1. For the more general case when the reflection is composed of J

symmetric beams having direction 01, 82,....,6J,

CRE |

™M <

& 8j =1 2.11

where J is the number of reflected beams.
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2.1.4, Parameters of the Generalized Model

ﬁ Three separate parameters have beesn introduced which define the
gas~surface iunteraction in a generalized manner. The average velocity of
E the reflected molecules is related to the velocity of the incident molecules

by the parameter aj where the magnitude of Uj is given by y

frgned. |

U, = U/l-o, 2.12
j k|

E’:‘:w v

The velocity Uj is a vector having direction defined by the angle of reflec-
- tion ej. As a first approximation, ej is related to the angle of incidence

8 by the parameter Pj given by

-’ B

L1 5
8, =5 P, + (1-P,) © 2.13 i
i 27] ( J)

The number flux of molecules reflected in the beam which is symmetrical

about the ej axis is related to the incident number flux by the parameter 3

Gj given by

. . - -
! mN, =¢, N=g, p Un
» ] J ]
g; where
o J
T o,=1
> =1
;
and where J represents the number of synmetric beams.
6

e
APES
R i

2.2. Subclasses of the Generalized Model

For each reflectzd beam, the parameters cj’ aj, and Pj must be

specified to determine the force on the surface., By proper choice of these

=3 v

parameters, the generalized model can be reduced to more specific gas-surface
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interaction models. This procedure is illustrated in the following three

sections for the models of Maxwell, Schamberg, and Nocilla,

2.2,1, Reduction to Maxwell Model

In the Maxwell reflection model, the reflection is divided into

two components, specular and diffuse. Define

dd fraction of incident molecules 2.14
which are reflected diffusely

fraction of incident molecules 2.15
which are reflected specularly

(l-ad)
The velocity of molecules reflected specularly is defined as being equal to
the incident velocity and angle of reflection is equal to the angle of
incidence (elastic collision with the surface) (see Figure 2.2). For the
-diffusely reflected component of the reflection consider the velocity of

reflection to be related to the incident velocity by the thermal accommoda-

tion coefficient aT where

o = = 2.16

where Ti’ Tr’ and Tw are defined as in Equation 2.2,
The Maxwell model is obtained from the generalized model, as

follows.

First, consider the specular component of reflection znd let this

be beam j = 1. Then, let

Q
—
]
—~
[
1
R
Q‘-
N’
)
-
~
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Let the diffusely reflected component of reflection be beam j = 2.
Then, let

= Moo U. ¥
°"1‘°rU2""/1°’TU’ Ti<<1

R
N
]

= 2.18

The force on a surface, due to the impingement and subsequent
reflections of the Maxwell type, is then
Fec R @ - o, - o,
¢ Un (U - 0,U; - 0,U,)
- -

=p Un (U - (1-ad) U1 - adUz) 2.19

where U1 = U having direction 6 and U2 =,J1-aT U having direction g.

2.2.2. Reduction to Schamberg Model

The Schamberg model already has much in common with the proposed
generalized model in that the reflection is considered as being in a beam’
which is axially symmetric about an angle which is not necessarily in the

specular or diffuse directio-, The principle differences between the two

models is the manner in which the reflected velocity and the angle of reflec-

tion are defined.

In the Schamberg model, a specific form for the distribution of
velocity in the reflected beam is given. The velocity of reflected mole-
cules are assumed to be equal in magnitude but distributed in direction and
number according to a cosine law within a beam width of angle ¢0 (see Figure

2.3} given by

. ,.48

PSS .

s

R T e T

et o vk el b e R

PO ISP WY



s e

N VT SN MLty YIHR BT ) T R VRGRERRD TS N G~ (SN SR SR RN SO, AT IR ST AT IR KPS ATF s i

SOn b A s TR e

e T o

e

i ey

Figure 2.3,

18

Axis of
Beam

]
SIS RS-418

Notation used in the Schamberg model,

&
2



&

AU PRS- s, Wt T T e il 2 cm e o ———— S e et e e e e

19

nr(¢) = K cos (%— . E} 2.20
)

where o, is the number of re-emitted molecules per unit time whose direction
of re-emission (relative to the axis of the beam) lies between ¢ and (¢+dp).
The constant K is related to the number flux of reflected molecules and is
dependent upon whether the reflected beam is two-dimensional (wedge shape)
or three-dimensional (conical shape).

To reduce the generalized model to the Schamberg model, the
average velocity of the reflected beam must be found. For a three-dimen-
sional conical beam the average reflected velocity can be determined from

expressions derived by Schamberg,

Uj = §3(¢0)Vr 2,21
where §30¢0) is defined in Schamberg's 1959 paper, and v. is the magnitude

of the constant velocity of individual molecules in the reflected beam.

The quantity §3(¢°) has a maximum value of one for ¢o = 0 and a minimum

value of 2/3 for ¢o = g. The velocity Vr is related to the incident velocity

Vi (or U in the notation being used for the generalized model) by & thermal

accommedation coefficient,«, which has been defined in Equation 2.2, i.e.
Vr = fl-a Vi 2.22

Substituting Equation 2,22 into the expression for Uj in Equation 2.21, the

following expression relating U, to U is cbtained.

j
LARRVECE NCIRY 2.23

Therefore, in order to reduce the generalized model to the Schamberg model,

the parameter aj must be defined as

R4
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N/l-ozj =Wl-a 8, @) 2.24
:[ The two parameters, o and ¢o’ of the Schamberg model are then veduced to one

7 parameter «,.
£ i

The angle-of~reflection law proposed by Schamberg is given by

I cos ej
?
]
-

"

= (cos e)” 2,25

and was discussed briefly in section 2.1.2, A plot of Equation 2,25 for

various values of vy is given in Figure 2.4. A rough approximation to

E : variation in ej as a function of § for the Schamberg model can be made by
discontinuous linear relationships. For example,

- .

3 o, = a+b.8, for 6 < 8
< J J 1]

2.26

-

+d. for > 8
Cj JS, 8 2

For the Schamberg model Equation 2,25, the ej vs O curves all pass through

(14

F o s R VLA o o+ A T B eI

i
s the (0,0) and (%,%) points. Using this information, aj = 0, cj = %}(l-dj).
%

-t Also, using the fact that at § = § the two lines intersect, Equations 2.26
% v reduce to
§
N
;: ' - (1_d.) . %
_— e.=11——;-1—+d,]e for 9 <6
: h| 2 g i
N 2,27
Pt _1 s *
§ i =3 (1 dj) + dje for 9 > 6
§

A one parameter family of discontinuous linear curves can be developed from

¢
~

*
Equations 2.27 for a choice of a relationship between 6 and §. This is
*
i ! illustrated in Figure 2.5 where ® was chosen to occur along the line from

. (0, E) to (Z,0). The approximation illustrated in Figure 2.5 retains the

)
-

essential characteristics of the Schamberg cosine variation,

1""“"'\:
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2.2,2, Reduction to Nocilla Model

S AT .
Nocilla postulated that the distribution of re-emitted molecular
velocities be a drifting Maxwellisa having a drift velocity of Ur in the

direction er. The distributior: function of reflected velocities is written

2
(C-U
N ].')

n
exp [-'—EEET“-] 2,28
r

f (C) = —_—
r (anTr)%

where C is the molecular velocity. Since number flux must be conserved at
the surface, n, can be relsted to the incident number flux. There are, then,
three paramet:rs remaining to describe the reflection, Ur’ er’ and Tr.

/

Nocilla has shown that the model can be made to closely match the
distribution obtained experimentally by Hurlbut16, for proper choice of the
quantitiezs Ur’ er and Tr' However, Nocilla doesn't propose an angle-of-
reflection law or a relation between the incoming and reflected velocities.
Therefore, in order to develop an interaction model using the distribution
function proposed by Nocilla, these relationships must be provided.

The Nocilla distribution function for reflected molecules has been
aprlied to the calculation of forces on a solid surface in free molecular
flow by Hurlbut and Sherman.6 Their results can be used to show that the
Nociila model is a subclass of the proposed generalized model.

The force on a surface due to a reflection of the Nocilla type is

divided by Hurlbut and Sherman into components in the direction cf the

incoming beam, Dr’ and perpendicular, Lr' (See Figure 2.6).
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2

n_mlU .
r 1 .
Dr = L2 [{cr x(or) + 5 T {lterf cr)} sin 6
2n°s
r
- 8_ cos 6, {x(sr)} cos e] 2.29
2
nrmUr 1 3
L. = , P [{orx(cr) tom (lterf cr)} cos ©
1]
T
+ 8 cos 8 {X(Gr)} sin 6] 2.30
where
- %
Sr = Uf/(ZRTr)
o= Sr sin er 2.31
2
_o-r %
x(cr) =e + 1 cr(1+erf cr)

If the term x(or) is factored out of Equations 2.29 and 2.30, and

if the expression for a. in Equations 2.31 is used, Dr and Lr bacome.

n_nl 2 n? (verf g)
D = x(c ) [-S ccs (+ ) + sin 9]
r 211%31,2 r r r 2 x(cr)
2.32
nrmUr2 n% (Mterf o) .
L = —5—=x(0) [S sin (8 +6) + cos §
t Zn%Srz r r r 2X(6r) J

From these equations, it is .apparent. that the vector force oa the surface
due to 1 reflection of the Nocilla type can be divided into components
normal to the surface and in the direction of the velocity Ur' From

Equations 2.32

n_mU [ij E n% (1+erf o )n-
7 ' =_r___r_x(c>[_s L, L 2,33
reflection Zn%SHZ r r Ur X(Gr)

L
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The outgoing number flux ﬁr is givan by
. kT -k 4
- NS Y . 2.
Nr e (2nm./ A(cr) >

Substituting Equation 2.33 into 2.34 and using the conservation of mass

flux condition

mN_ = mN = pﬁ~n 2.35

Equation 2,33 reduces *o

- = A - - "-.—c -4_‘
Foeflection  ° Urn L U + G(Gr) ! 2.36
where
(2[\’1‘?)% }2' . - . 2
D er— + .
G(or) ZX(Gr) [n (l4erf ch 37

In terms of the proposed generalized model, a reflection of the
Nocilla type can be considered to be composed of two beams, one normal to
surface and one in the direction of ﬁr' The parawmeter oj is not needed
since conservation of mass flux is automatically satisfied by the two beams. sl
Let beam j = 1 be in the Gr direction. Since one is free to choose

relationships for the Ur and 6ps let

+ (1-2_) 6 2.33

=/'.{- a ..-:H'U
U, =4i-a, Uand g =7 F .

r

Consider beam j = 2 to be normal to the surface. Then

c
fl

, = 6(a.) = &(c e, 2,39

where

(o]
i

(2RT )%
Tr
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then from Equation 2.37, define

% l+erf o.

@(or) =5 W 2,40

b= |

Assuming the the velocity . is related to the incident velocity u by the

thermal accommodation coefficient o,

c, =il U 2.41
we can define the parameter @, as
Ji-a, = /l-a 8(c.) 2.42

The reduction of the generalized model to a model using the
Nocilla reflected distribution function is now complete. The model obtained
still contains three parameters; . Pr’ and @,. This form of model serves
to illustrate some intercsting characteristics of the Nocilla distribution
function. The forces caused by a reflection of the Nocilla type are seen to
have the character of a Maxwell reflection model except that, instead of a
specular component, a Ur component is employed. Also, similar to the Max-
well model, the magnitude of the Ur component of reflection is seen to
determine, except for one parameter, the magnitude of the normal component
of reflection. The normal component of reflection is analogous to the
diffusion component in the Maxwell model, Figure 2.7 shows a plot of the
coefficient of the normal component of the Nocilla distribution function,
@(cr), as a function g_. The term . is equal to the prodnct uf U and
sin er divided by €. From Figure 2.7, as Ur becomes large compared to .

the magnitude of the normal component becomes small. At er = 0, the normal
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component has a maximum value of .89 e Due to its dependence on sin er,
the quantity 0. can not in general be assumed to always be large. However,

under the special conditions of Ur being much greater than c. and Pr greater

than zero (this condition on P_ insures that sin er and therefore o. will

not be zero), the quantity Q(cr) may be assumed to be small in comparison

T e I A

to the Ur component of reflection. Under these conditions, the Nocilla

distribution function resembles the type of reflection described by the

PRIV SN SLMVEN

generalized model with the average velocity Uj replaced by the velocity Ur

of the Nocilla distribution.

N

2,3. Incorporaticn of Experimental Results

2.3.1. Current Status of Molecular Beam Experiments ;

Molecular beam experiments have not as yet been able to obtain
results which could be directly applicable to the calculation of forces and
torques on a satellite. The major limitation in molecular beam experiments
is the inability to produce a neutral molecular beam of sufficient intensity
and at a velocity which corresponds to the velocity of impingement of
atmospheric molecules on a satellite in near earth orbit. In terms of the
energy of interaction, the range of 1 to 10 ev corresponds to that which
occurs in a near earth orbit., Interaction energies below 1 ev have been
obtained by aerodynamic. methods such as expansion of a high pressure gas
through a nozzle. On the high energy side of the 1 to 10 ev range (10 ev \
and above) neutral molecular beams have been obtained by the method of ion
acceleration with subsequent neutralization by charge exchange techniques

(see for example Reference 2).
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Although the energy of interaction is of primary importance in
determining the character of the gas-surface interaction, other factors
such as the satellite surface conditions and composition of gases incident
on the surface are also believed to influence the interac!i<n. The major
limitation in duplicating these factors in molecular beaa experiments has
been that satellite surface condition and atmospheric composition remain
uncertain.

As can be concluded from the above discussion, available ex-
perimental results are probably not applicable for determining accurately
the values of the gas-surface interaction parameters for the calculation
of aerodynamics forces on satellites. However, molecular beam experiments
outside the 1 to 10 ev range could for example suggest the form of the ej
vs 8 relationship, or, indicate trends in the character of the interaction

which could be extrapolated to the 1 to 10 ev range.

2.3.2, Incorporation of Intensity Distribution

The majority of experimental work is aimed toward obtaining
information on the distribution function of reflected molecules because
all other flow pronerties can be found from the disctribution function,

For application to calculating forces on convex satellite shapes, however,
less detailed information can be used since the actval form of the distri-
bution function is unimportant. The generalized gas-surface interaction
model developed in section 2.1 suggests the type of experimental data

which would be most useful for satellite application. For example,
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distribution of reflected intensity provides information con the number of
beam components (single lobed, J = 1; bi-lobed, J = 2; etc). Also, inten-
sity distributions obtained for various angles of attack to the incident
beam reveals characteristics of the ej vs B relation. As An example, the
experimental results of er vs 8 for high velocity argon beams on heated
platimum obtained by Moran, Wachman, and Trilling17 are plotted in Figure
2.8. These results show that as the beam velocity increases, the para-
meter Pj (using the first approximation for the 8 relaiionship) approaches
zero, These results show a slight departure from a linear relation in er
vs 8 at low incidence angles. The departure is opposite to that postulated
by Schamberg's (see Figure 2.4) cosine powered relationship.

Oversgpeculayr (ej < 8) and backscatter (ej > %) results can not
be reproduced in the Schamberg or the Maxwell model. Such results are.
however, easily incorporated into the generalized model. For example,
backscattering results could be approximated by a linear relation by
allowing Pj to take on values betweer 1 and 2. Overspecular results and
over-backscatter (ej > 1 - 8) could be approximated by 2nd or 3rd degree
polynomials or by discontinuous linear relations. These regions are

indicated in Figure 2.9 with examples of the possible angular relationships.

2.3.3. Incorporation of Force Measuxrements

Force measurements made on flat surfaces at angles of attack to a
molecular beam can yield considerable information on the gas-surface inter-

action and the results are particularly suited for analysis in terms of

B e S W st BN e
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G (degrees)

Figure 2.9. The full range of possible angle-of-reflection
laws in the generalized model.
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the generalized model., Since the force on the surface due to the impinge-
ment can be obtained from measured beam velocity and intensity, the force
due to the reflection of molecules can be directly obtained. Therefore,
the magnitude and direction of the reflection force can be determined to
yield information on the ej vs B relationship and also the value of GjJI;;;'
In order to properly analyze force measurements in this manner, however,

it is necessary to know the number of beam components which make up the
reflection. Experiments set up to measure forces are not usually set up

to measure the distribution of intensity which could reveal the number of
beam components. In the absence of such information, special measuring
techniques can be employed to obtain the desired information from the force
measurements. For example, the technique employed by Boring and Humphr1318
to obtain reflected force in the directions normal and tangential to the
surface can be extended to obtain measured values of the reflected force

at angles between those two limits. The results would reveal the lobal

maxima of the beam components and thereby yield information on the 8,

relationship and the quantities chl-aj.

2.4. Significance of the Proposed Model

The generalized gas-surface interaction model developed in this
chapter was shown to be reducible to three currently accepted gas-surface
interaction models. In addition, the generalized model is found to be
anplicable to approximating a wide range of possible gas-surface interaction

by including the possibilities of over-specular and backscatter retlection.
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The generalized model is found to also be useful in the interpretation of
laboratory experiment results, as illustrated in Figure 2.8, in order to
indicate trends and similarities in laboratory data.

The generalized model described in this chapter has incorporated
1) the effect of the angle of incidence on the angle of reflection and
2) the effect of the incident velocity on the reflected velocity. These

are undoubtedly the major factors i. ancing the gas-surface interaction.

Additional factors, however, can readily be incorporated into the gen-

eralized model, For example, the velocity of reflection could be considered

to be a function of the angle of incidence as well as a function of the
incident velocity. This effect is, in fact, incorporated in the results
obtained in the reducticn of the generalized model to the Nccilla model.
The generalized model could also be extended to include the possibility
that cj and aj are both functions of U and §. Although refinements such as
these will not be included in the application of the generalized model in
the work which follows, they may be incorporated whenever warrented.

The generalized model employs three parameters cj, dj’ and Pj
for each beam of the reflection. The two parameters ¢. and &, determine
the magnitude of the force due to the reflection and the parameter P,
determines the direction of that force. When using the generalized mocdel,
as will be seen in the following chapters, the quantity cjvq:ag can be con-
sidered as a single parameter in place of both ¢, and aj. That is, speci-
fication of the two quantities cjjf;;; and Pj are sufficient for determin-
ing the force and torque acting on a convex body in a free molecular flow.

In the analysis of subsequent chapters, the generalized model
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will be employed in the development of equations which express the aero-

dynamic properties of bodies in a free molecular flow.
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3. BASIC AERODYNAMICS EQUATIONS

The generalized gas-surface interaction model is applied in this
chapter to the development of the equations for expressing force and torque

acting on spinning bodies in free molecular flow., The resulting equations

have wide application since they can be interpreted in terms of many specific

models,

The equations for drag, lift, and torque are obtained in differ-
ential form for four body shapes in particular (disk, cylinder, cone, and
sphere). The results will be used in the next chapter to study the effects
of spin and the gaswsuriace interaction on the aerodynamic properties of

bodies of these shapes.

3.1. Basic Equations of Force and Torque

Consider a surface element, dA, on a spinning body. If the posi-
tive normal of that element of surface is H, the mass flux impinging oun the
surface is

- TU-nda
where p is the density of the free stream gas and U is the vector velocity
of the incident flow relative to the surface. The velocity U is assumad to
be much higher than the thermal motion of the free stream gas so that ran-
dom fluctuations in the velocity can be.neglected {(hypothermal assumption).
The mass flux is a positive number since the quantity (ﬁ-g) must always be

negacive in order for molecules to hit the surface. The vector force on the

surface due to the impingement of molecules is given by

PO PP e
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= T¢{~p U-n dA) 3.2

dF) . .

( r)lnc1dent
-

where the notation dF is used to denote the force on the surface area dA,

Using the notation introduced in the preceding chapter for the

generalized model, the vector force due tc the reflection of molecules is

given by

reflection = -cj Uj (-pU-n dA) 3.3

-
(dF)

-
where the minus sign is required because the vector velocity Uj must be in

the direction away from the surface. For cases in which the reflection is

composed of more than one beam component, the force due to the reflection

is given by T
(OF) esrection.” ~@1Up T Uy ¥ -v + ;U5 (-pU:n) dA 3.4

where J is the number of beams making up the reflection, Since the re-
peated subscripts can be used to imply the summation, Equation 3.3 will be
used in the development of equations which follow.

The total vector force on the element of surface is the sum of

force due to impingement and force due to reflection given by
dF = -(U - ojﬁj) o Un dA 3.5

Consider the element of surface dA to be at a point defined by
the radius vector, i, from the center of a2 coordinate system attached to
the body. The vector torque, df, about the center of the coordinate system
caused by the impingement and reflection of molecules on the clement of sur-

face dA is then
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dT = -Bx (U - ¢.U.) p U-n dA 3.6

Equations 3.5 and 3.6 form the basic equations necessary for
determining the force and torque on a convex body in free molecular flow.
These equations are not applicable to concave body shapes which allow

molecules reflected from one part of the body surface to impinge again on
A

the body.

’

of

vy

3.2. Aerodvnamics Equations for a Class of Spinning Body Shapes

For spinning bodies, the velocity of impinging molecules with
respect to the suiface elemencs depends upon the spin rate and position of
the surface element with respect to the spin axis. Let U_ be the free
stream velocity and let i;e spin rate of the body be defined by a spin
vector, a. The vector velocity of impinging molecules with respect to any

peint on the surface exposed to the flow is then given by

U= Um - (XR 3.7

where R is the radius vector from the center of a coordinate system actached
to the body (see Figure 3.1),

The reflected velocity vector, ﬁj’ is also dependent upon position
on the surface and spin rate since the magnitude and direction of ﬁj is
related to the magnitude and directioa of the incident velocity fi through .
the parameters introduced in the generalized model. For a given body shape
(within the class of convex shapes) the velocity vector Ui can be wriitten in

- -

— -
terms of the vectors U, n, Q, and R and the appropriate gas-surface inter-

action parameters. For example, consider the class of body shapes which

[REPPT

-
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have circular cross section at any point along the spin-axis. For this

-
class of body shapes, a iucal unit tangent vector, t, can be defined as

[ln 3.8
|oxr
where iaiﬁl.represents the magnitude of the vector quantity 5X§.

-
Since n is the local unit normal vector to the surface element

u—y
dA, a third unit vector, m, can be defined to form a triad.

1
1

Q)
=

o= x SR 3.9
|OxR|

-
The unit vector m is also locally tangent to the surface. Consider now that

21
=

P . = . . .
the iancident veleocity vector, U, has component Un’Ut’Um in the directions of

- - . .
n,t,m, respectively, That is, lec

Also, let Uj be defineé¢ in this coordinate system as

Uj = (Uj)t t +;(Uj)m m + (UJ,)n n 3.11

If the angle 6 represents the angle of incidence with respect to the surface

plane {see Figure 3,2), the components of T are given by

Ut = U cos § cos vy
U, = Ucos 8 sin vy 3.12
Un = -U sin 8

where U is the magnitude of the incident velocity and y is the azimuth angle

of incidence defined in Figure 3.2,
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—
Since the reflection is in the plane of T and n, the comporents of
Uj can be written in terms of gj and v,

U, = -U, cos @, cos
(u,) f eJ Y

j't
U, = -U, cos 8, si 3.13
( J)m i SJ sin vy
U, = -U, sin 6.
( J)n J eJ

where Uj is the magnitude of the reflected velocity, ﬁi° The quantity Ui is

related to the quantity U by the expression given in chapter 2. That is,

= Vﬁ-aj U 3.14

The angle vy is found in terms of the vector ﬁ, by the Zollowing identities

) _ Tt
U cos vy = cos ©
_ Tam .
sin ¥ cos 6 3.15
-U-n
U= sin 8

Using Equations 3.15 and 3.14 in Equatjions 3,13, Equation 3.1l becomes

e p[Cos6., _ _, _, cosB. _ _, _ sin6,; ﬂ ﬁ -
- - { . -
= JI-a. [—lcose CHT+—L Tm ———-lsm ) 7] 3.16

Iy —_
. Using the definitions of t given in Equation 3.8 and m given in Equation 3.9,

Equation 3.16 reduces to the following form

cose P T ) —_ - -2
¢1-a { (U-R] R (|OxR])

cose -t — - el -— = -2
(
A [u nX(QXR) ] ax(XR) (|OXR])
sing.
_ __.__1 —a.-» -
sing [U-n) n} 317
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Equation 3.17 is valid for any body shape which is both convex and

has circular cross sections at any point along the spin axis., For shapes of
- —

this class, the vector QXR is always perpendicular to the unit normal vector

n. Therefore, using Equation 3.7, the following can be obtained

Toa = (?’m -3®)n =0 0 3.18

2]
Substituting Equations 3.18, 3.17, and 3.7 into Equation 3.5, the
vector force on an elemernt of surface of a spinning body having circular

cross-sections about the spin axis becomes

&F = o, M [T - B + chaxﬁ(rz [ @R - (&)

..3.19
+ ¢ ([BR))? [T, 2x @D W @R - 5, [U,7) o}
where
C, = g1, %% 3.20
A 3 j cose
_____ sing,
and Sj = chl-aj E;;gl 3.21

The equation for torque can be obtained directly from Equation 3.19 by tak-

-

ing the cross product with the vector R.

In the above analysis the force and torque acting on a spinning
body are expressed in terms of the parameters of the generalized gas-surface
interaction model, For a given body shape in the class of shapes for which

- - -
Equation 3.19 is walid, the vectors Um, Q, K, and n are known. In the

following sections, the force and torque equations will be developed for

four basic body shapes (the disk, cylinder, conz, and sphere) which will

-
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illustrate the application of Equation 3.19. The results will be analyzed in
the following chapter for specific values of the generalized gas-surface inter-

action parameters,

3.2.1. Coordinate Systems

Two coordinate systems will be used in the development of equations
for the disk, cylinder, cone, and sphere. The two coordinate syscems which
are the same for each case are defined as follows.

Consider first a coordinate system (x,y,z) which is attached to the
free stream velecity vector, ﬁm. The positive y axis will always be defined

-
to be in the positive U°° direction. Consider now a body having a spin vector

-
1. Let a coordinate system (xs,ys,zs) be defined in which the 2 axis is

alyays in the direction of the spin vector a. Furthermore, consider ihe zg
axis to be initially inclined at an angle es with respect to the z axis of
the x,y,z coordinate systems and in the x-z plane. i1so counsider the X axis
to be initially collinear with the x axis. The coordinate systems are shown
in Figure 3.3,

0 The XYoo and zg coordinate system associated with the body is not
a co-rotating system with the bedy. Only the zg axis is rigidly attached to
the spinning body by always being in the direction of the spin rate vector 6.
The % and Yo axis remain fixed in inertial space as the body rotates, if no
torques act on the body. If the body is acted on by external torques, the

X and Y axis will rotate as a function of the precession rate caused by

the external torque. For cases in which the free stream velocity vector is
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Orientation of body coordinate system with respect
to system attached to the flow,

Figure 3.3,
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fixed in inertial space, the (x,y,z) system is an inertial system and the
two coordinate systems are similar to those which would be set up for the
classical top problem.19 The case for whicn 3m rotates in inertial space
(such as for a body in orbit) is taken into consideration in a later chap-
ter by referring the results obtained using the coordinated systems
defined above,by a coordinate transformation, to a true inertial reference,
The component of force in the y direction will be referred to as
the drag component while the x and z components of force will be termed
(1ift)x and (lift)z. In terms of the components of force on an element of

surface, the vector force is given by
dF = d(1ift) i + d(drag) j + d(Lift) k 3.22

where i,j,k are the unit.vectors along the positive x,y,z axis. The dif-
ferential notation is used to denote the vector force on the element of
area, da.

The vector torque is divided into components along the XY

z axis, The component of torque along the zg axis is termed slow-down

torque, Ts. The X and Y components of torque are perpendicular to the

spin axis and are denoted by Ti and tj . The vector torque dT is then
s s
given by

dT = d(Ti ) i + d(Tj ) Jg + d(Tk ) ks 3.23
] s s
where iq,js,kq are the unit vectors along the positive xs,ys,zs axis.
The surface element dA of the body is at a point defined by the

-
radius vector R from the center of the coordinate systems. 1In the
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subsequent development, cylindrical coordinates about the zg axis are em-

RS ™

ployed in which an angle & is defined ac measured from the positive X axis

to the projection of R onto the XY plane (see Figure 3.4).

3.2.2. Spinning Disk at Angles of Attack

A disk spinning about th2 surface normal is in the class of body
shapes for which Equation 3.19 is valid. Consider a circular disk of radins
ry with spin vector Q normal to the surface at the center of the disk. Fig-

ure 3.5 shows the disk with the centers of the coordinate systems, defined

815000 47

above, at the center of the disk. The following vectors are required to

§

find the force and torque components acting on the disk. Referring to Fig-

ures 3.3, 3.4, and 3.5

2 e

U, =Ujg= U, cos eSJS - U_ sin esks

d=qk
- 3.24
§ -
% R=1r cos € i + r sin § ig
?,
R e
- s

ary 8 e
Xy

where r 1is the distance from the center of the disk to the surface element

dA whe. » dA is given by

QA e AN

e e T

-

dA = rdrdg 3.25
The angle 6 must now be determined for use in Cj given by Equation 3.20

and Sj given by Equation 3.21. Since

Un=Usin 8 3.26
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A B _ﬁ .;“.
8 = sin”! [—UU—“] = sin’ ! =] 3.27
Using Equation 3.24, 6 becomes
1 U sin 8
o= sin | s %J 3.28
(Uco +r°q° - 2U°° rQ cos E cos es)

Define a non-dimensional quantity, Kd, as the ratio of the peripheral speed

of the disk to the free stream velocity, U;. That is, let

K, =— 3.29

where £y is the radius of the disk. Define, also, a non-dimensional variable

r' as the ratio of the variable r to ry. That is, let

! =i 3.30
r

Using Equations 3.29 and 2.30 in Equation 3.28, & becomes

sin
es

= 1 |-
6 sin L

3.31
(1+Kd2(r')2 - 2K, r’ cos € cos g)%]

Substituting Equations 3.24, 3,25, and 3.30 into Equation 3.19 for dF and

taking components along the x,y,z axis, the following results are obtained

d(drag) Dd dr’ dg [r'(l-Cj) - Kd(r')2 cos es cos E (1—Cj)

2
+ r’ si C. + S, 3.32
r’ sin es ( 3 J)]

. ' 3 .
d(llftz) Dd dr * dg [ Kd(r )" c¢ns g sin es (1 Cj)

-t/ s y c.+s.] 3.33
r’ sin g_ ccs 6S ( 5 J)

e S T
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X (ft ) = / "2 g ] 3.54
' d(llftx) =D, dr’ dg [Kd(r )" sin € (1 Cj)] . .
i where
|
;0 D= ou? e L2
u a= Pl sin o Ty
i
S cos 8,
Do C. = on/i,
bl 37OV s 6
! . sin 6,
?‘ S. = gufl-q, —1
|l 5= 99/h S
I 7} and where @ is defincd by Equation 3,31
R}
? v Similarly, the components of torque are obtained, given by
Py
b d(T, ) =Dy r dr’ dg [-r')? sin € sin 0, (1+5)] . 3.35
; g .
¥ , 2
; = o 1 - .36
B! d(Tjs) D; T4 de’ d€ [(xr')” cos E cos S (1+SJ.)J 3.3
.
t . f 2 3
! i = ’ ’ . _ ’ _
P d(Tks) D £4 dr’ d€ [(r")" cos § cos 8 1 Cj) Kd(r )7(L Cj)] 3.37
3 where Dd’ Cj’ Sj’ and § are as defined above.
i
|
" Equations 3.31 through 3.37 are the basic equations expressing the

force and torque on a spinning or non-spinning disk, Tn chapter &, these
equations will be evaluated for specif.c cases of the gas-surfa.~ interaction

model.

o 3.2.3. Spinning Cylinder at Angles of Attack
The orientation of the spinning cylinder with respect to the x,y,z

and X Y gr2 coordinate systems is shown in Figure 3.6. The cylinder of

[

length L is spinning about the axis of the cylinder. The center of the

coordinate systeam is placed at the geometric center of the cylinder. The
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Spinning cylinder at angle of attack.

Figure 3.6.
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followirg vectors are defined
Um = U°° cos GSJS - UQ sin es ks
Q1= ka
- 3.38
R = Loy COS gi + Loy 810 § 3, + Ik
h =

cos § is + sin § j

where rCv is the radius of the cylinder and £ is the variable of integra-
tion along the axis of the cylinder. The element of surface dA is given

by

db = r__ dE dg 3.39
cy

From Equations 3.38, the angle & is Zound to be

~COS es sin §

6 = sin’ 5 . 3.40
(vicy - 2Kcy cos E cos es)
where the non-dimensional spin-rate parameter Kcy is defined as
rc Q
K = '——L 3.41
cy Uw

The variable of integration 4 appears only in Equation 3.39 above,
The equations for the cylinder can then immediately be integrated with

L L
respect to 4 from - 5 to + =

2 X The variable g still remains, however.

Letting
2

Dcy = pr rcy L cos 63,

The resulting basic equations for the cylinder are found to be



SEE e =
YT Rl I T ven e e - PP L s pmmepe s e et e o - R T T T T

ey

Ei 55
g d(drag) = Dcy dg[«sin g (1-Cj) + Kcy cos es sin § cos § (1—CJ.)
i 2 .3
- cos"g  sin g (Cj + Sj)] 3.42
g d(lJ_f;:)z = Dcy dg ‘[Kcy sin es cos € sin (1-Cj)
. . 3
ﬁ - ¢os es sin es sin™g (Cj + Sj)] 3.43
, s - - . 2 P
& a(ige) =D d [ K, sin’E (1-C,)
, 2
» -~ cos §_cos g sin"g (C, + S,)w 3.44
%‘5 5 J J o
d(T, ) =D_.T__ dE |sin 6 sin’E (1-C.) | 3.45
is? = Doy Tey S5 510 8 4050 '
d(Tjs) =D 7., 4 [sin' 8, cos & sin g (1 - cj)} 3.46
4, ) =D, x4 [Kcy sin € (1 - €))

+ cos es cos § sin € (I-Cj)] 3.47

where C, and Sj are as defired previously.

3

The surface of the cylinder exposed to the flow is from § = 7 to

21 2t all angles of attack except §_ = 'g' and - % where none of the surface

ig in the flow, Equations 3.42 - 3,47 are the basic expressions for force

==

and torque on a spinning or non-spinning cylinder. These equations will be

evaluated in chapter 4 for specific cases of the reflection model.

3.2.4. Spinning Cone at Angles of Actack

g

i

A cone having half angle §, height Hc’ and base radius L is

shown oriented in the x,y,z and X oY gr2go coordinate systems in Figure 3.7,

The center of the coordinate syscem is at the center of the base of the

~
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cone, The cone is spinning about the axis of the cone, The following vec-
tors are defined

U,=1U_ cos es js - U sin es ks

Q=k,

-
R

£(4) cos g i+ £(2) sin € Jg+ 4 kg

h = cos € cos § is + sin € cos 6 jS + sin § ks 3.48
where £ is the variable of integration aleng the axis of the cone and £(4)

is the radial distance of the surface dA from the axis of the cone. The

distance £(4) is given by

HC -1
£ = —5 r,
c
The element of surface dA is given by
dA=M‘d§d£

cos &
The angle 8 is found, using Equation 3.48, to be given by

sin es sin § - cos es sin € cos §
2

sin 8 = 3.49

(1 + (£')2 K “ - 24" K_ cos € cos ® )%
c c s
where Kc is the non-dimensional spin rate porameter defined as

K - @
c U

o]

and ¢’ is a ron-dimensional variable defined as

T ey,
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Letting

. 2
_ 2 "¢
Dc TP Qx sin §

The basic equations for the cone become

d(drag) = D, dg ds’ [-L'x(l - Cj> + xKC(z')z cos € cos Gs (1~ Cj)
x> 4’ (c, + S.)] 3.50
J 3
. 2 .
d(1ife) =D, dg df’ [xKC () cos € sin 6, (1-C,)
2 ., .
~¢x" 4" (sin & cos GS
F si : ¢, +5.)] 3.51
sin § cos § sin 6_)( f J)
o - o2 )
d(lift) =D_ dg dg [ XK, (407 sin € (1 - C)
2 ' c
-x" cos & cos & & (Cj + Sj)] 3.52
- - ' "2 . . - _
d(TiS),— Dc_c dg di [x(z )" sin es sin € (1 Cj)

+ xz' (1-4') cot & cos es (I-Cj)
- XK, (.@')2 (1-2°) cot § cos E (1—Cj)
+ xz{-(z')z sin § sin g
+ £'(1-2") cot § sinE cos 6}(Cj + Sj)j 3.53
4T ) = Der, dg 4’ [k, (2)2(1-4") cot 6 sin € (1-c,)
_X(z’)z sin es cos § (1-Cj)
2,

~x 2L - 2") cot & cos € cos § (c, + Sj)

o
+X2(£')‘ sin § cos § (Cj + s:)] J.5¢4
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d(Tks) = Dcrc dg da’ [(ch (31)3 - X(£1>2 cos es cos E) (1-Cj)] 3.55

where

X = cos es sin € cos § - sin es sin § 3.56

The surface of the cone exposed to the flow is a function of the
angles es and §. At es = g, for example, the entire condcal surface is ex~
posed to the flow (§ = 0 = 2n1), In fact, for all values of es between g and
g - §, the entire conical surface is exposed to the flow. At angles of es
i;etween (- -"21 + 6), decreasing amounts of the conical surface is exposed to
the flow. The shadow boundary for the flow on the surface is always a
straight line and can be found in terms of the variable, €, by finding where
Tn = 0. Define the angle, B, to be the.value of § at the shadow boundary.

Then,

B = sin | (tan 6, tan &) 3.57

;rom Equation 3.57, the following three categories of surface exposure are
defined.
Case I: tan QS tan § =1
Entire conital surface (§ = 0 = 211) is exposed to the
flow.
Case II: -1 < tan es tan § <1 Y

’

Only part of the conical surface -
E=(m-B)~ 2n+ B)
is exposed to the flow.

.Case III: tan es tan 6 < -1
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No part of the conical surface is exposed to the flow.

(The base of the cone having not been included in the

oo i by £,
Laomng

basic equations for the cone).

(i)

2.2.5. Spinning Sphere at Angles of Attack

A sphere of radius r is shown oriented with respect to the x,y,z

fonrd  foed

and LS SEE N coordinate systems in Figure 3.8. The spin axis is along a
diameter of the sphere at an angle (g-es) with respect to the free stream
velocity. Cylindrical coordinates are used to describe the position of the
surface element dA., With ¢ denoting the variable length along the spin axis,
dA is giveﬁ by

dA = X dg dg

The following vectors are defined

frnd mwg Coowd ey

9 U =U cos® j -U sin g k
© -] S ] © S S
Q=0k,
R = r(s) cos €4+ r(4) sin &, + fk_ 3.58

3

s

o= x(e) cos § i + r(2) sin § j + L k
r s r s r s

where r(4) is the radial distance frcm the spin axis at the point £ to the

ows o e e

element of surface dA

B

rg) = (x % - £2>35 3..59

The angle € is obtained from Equations 3.58 as

4/ sid & - 2 sin E cos @

. 5 S s

sin § = 2 5 ~ % 3.60
(144 " K~ - 2k 4 <cos E cos 8 )

s s s s s
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Spinning sphere at angle of attack.

00)
Figure 3.8.
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: where KS is tre non-dimensional spin-rate parameter defined as

. =50

¢ s U

' I ®

; ’ and £’ is 2 non-dimensional variable of integration defined as

-

i r ot

: ¢£ 4 = "

¥ s

g ]: and

2 , 2

1 ¢ = [-a )

% Letting

' Jx D =p Uz r 2

; s @ s

f I The basic equation for the sphere becomes

; _ ’ -

; :[ d(drag) = Ds dg d4 [xs (-1 + Ks zs cos.E cos es)(l Cj)

S RECEERY 3.61
; -f s 1]

i

. ¢

;; . = 7 . W)

P d(llftz) DS dE dg [xskszs cos § sin es (1 ,j)

i ’E Z !/ a0 <+ oy -

i % (2’ cos O gs sin £ :o. es) (Cj+sj>] 3.62
¥ . ;

P d(lift ) = D_dg dg’ [-x_k_4_ sin g (1-C,)

o X £ s s s 3

S -y 2 4 cos E (C.+S,)] 3,63
s s i ‘
‘ - ’ . .

1 \z d(Tis) D, r, dg d4 [zs sin 6 sin §

P

;

- 7 7 , sl
K, 244 cos §E+ 4" cos eS] %g (1 uj) 3.64

. i e
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= ! _/ 3 - ».‘, 1 » -
d(Tjs) D, §§ dg £ 4, sin 8, cos § - K_ 44 sin ] X (1 Cj) 3.65
_ ’ , 2 - _
d(Tks) = Ds r, dg dg [Ks iy zs cos € cos es] X (1 Cj) 3.66
where

= . _ ol s
Xg Ls cos es sin § - £ sin es
The shadow line of the flow on the surface of the sphere is a

curve in the £’ - € plane. At a constant 4’, the shadow limits in terms of

£ can be found by finding where G = 0. Define the angle Bs to be the value

of € at the shadow boundary. Then, Bs is given by

/
B = sin 1 tan 6 L}
s s zs

For arbitrary values of es, the shadow determines three regions of exposure

along the spin axis. Referring to Figure 3.9

/

Region I: tan es'%—.z 1
s

In this region the surface from § = U to € = 27 is exposed to the

flow

!
Region II:. -1 < tan es f—.g 1
3

In this region the shadow limits are, at any point, 2, from

€ =1 - Bs.to E = 2n + Bs'

Region III: tan § < -1

S

»

This region of the sphere:is not exposed to the flow.

. bt Pty

B SN



! i
,_M.,
| .
| " - =2 H . j
i C c c i - “
“ R Q0 o & S :
o o (e)) Y
()] (0] () o
, 0 aC o £
| | X
H o
' o
S ~ | 3
T ms ' '
i 5
o
(9]
N ! ,m
. - -
A | .”__ ___________. [ v_____ 2
%) | ®
| o =
w
]
" [e]
) i -
ot '
A 5
[+]
2
, el o
3 ™
[J]
} 97
=
1]
, o
=y
i
|
b3 +—y +—2 t—§ t+-1 I T N At T S SR S B e B S S B e B e B




<

o ey e S SR

A NS

ey

g
£
i
i

iy

= =

65

3.3. Applications

The equations which have been obtained for the four basic shapes
of the disk, cylinder, cone, and sphere are applicable to a wide variety of
problems. In the next chapters these equations will be used to evaluate the
effects of spin rate and the gas surface interaction on the dynamic pro-
perties of these shapes in free molecular flow. The application of the
equations to other problems is discussed as follows.

Many satellite shapes can be simulated by a combination of the
four basic shapes of the disk, cylinder, cone, and sphere. If the satellite
is of convex shape, the basic equations developed in this chapter can be
applied dire.tly. Since the equations. are in differential form, they are
equally applicable to bodies composed of segments of the sphere (such as
spherical caps), cone frustrums and segments of the cylinder and disk.

Surface properties affect the character of the gas-surface inter-
action. Many satellites ace composed afi surfaces which have widely differing
surface properties such as solar 'cells versus painted surfaces and varying
surface temperature or roughness. Protlems of this type can be studied
using the equations developed in this chapter by assigning different values

to the parameters of _he gas-surface interaction model for a specific region

of the surface,
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4. AERODYNAMIC PROPERTIES OF SELECTED SHAPES

In this chapter aerodynamic properties of selected shapes are
evaluated from the expressions developed in chapter 3. For the special case
of the Maxwell model., results are obtained to illusirate the effects of spin
on the aerodynamic properties of the four basic shapes of disk, cylinder,
cone, and sphere. Analytical results are also obtained in terms of the
generalized model parameters for drag of the four body shapes with zero spin.

In general, the aerodynamic properties must be evaluated by using
numerical methods. The numerical techniques employed in this study are out-
Lined in this chapter and results obtained for various values of the gen-
eralized model parameters are presented. These results are compared with
thoce obtained for the special case of the Maxwell model.

In the next chapter, the results obtained for the cone and disk

are applied to the problem of a satellite in near earth orbic.

4.1. Special Case of the Maxweil Model

The reduction of the gencralized gas-surface interaction model
parameters to the parameters of the Maxwell model was demonstrated in
section 2.3.1. Those results can be applied to determining in terms of
the Maxwell model! parameters the quantities Cj and Sj which appear in the

b

basic aerodynamic equations developed in chapter 3. For specular reflec-

tion,
— __ cOos B
Cj B Gle-aj cos § =1- %4
sin © 4.1
= g /1~ - =1-q
SJ G]” j sio § d

F e =
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For diffuse reflection,

C.=0
J
Sj - adJluaT sin 6

Combining diffuse and specular reflection, the values of Ci and Sj in terms

of the parameters of the Maxwell model become

]

(Cj) 1- oy

w
L,2

]
'—l

(Sj)

m

o 1
+ - —— —
anl ol'l' sin 3

%
In the basic aerodynamic equations, rhe fnllowing functions of Cj and Sj

occur repeatedly. 1In terms of the Maxwe!l model parvmeters, these functions

are given as

1 - (cj) =y
m
. _ ) ool
(€0 + (5 = 2(lay) +ag/loey oo +3
m m
— 1
= - 1-
1+(SJ.)m 2 -yt oyl oy

The equations for the disk, cylinder and cove could be integrated
analytically except for the terms centaining (sin e).l shich appear in Equa-
tions 4.3.

The angle of incidence of the flow, 9§, is a function of the spia-
rate and position of the surface element dA as discussed in chapter 3. For
the four body shapes studies, the expressions found in chapter 3 for sin 8

for each shape are all of the following form
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’ “ . 2.2 -k
; . sin 8 = A [1 +K°d” - 2Kd cos § cos 8,] 4.4
% -i where Table 4.1 gives the values for A, X, and d for the four shapes studied
g - in chapter 3. The terms K and d are non-dimensional where d represents,
i - except of the case of the cylinder, a variable of integration which may have
? :: a maximum value of one or less. The spin rate parameter K is the ratio of
§ - the maximum peripheral velocity of the body to the free stream velocity u_.
% .2 For sétellite applications, K is always less than one as can be determinen
f ‘; from the values for K given in Table 4.2 for a number of past satellites.
% " Since K <« 1 and d < 1 for satellite applications,
; . ®%4% - 2Kd cos 6_ cos )% <1 4.5
% -T and (sin 9)-1 can be expanded in a binomial seuries as an approximation to
§ ” the dependence of{ 4 on spin rate and surface position. The result of the
; ‘i expansion is
% '? (sin e)"1 a:% [1 - Kd cos es cos £ + % (Kd)2 Q - coszeS cos2 E)
- r o)’ s
; - where terms of order (Kd)3 and higher are not to be retained, Substitut-
% 'f ing Eqration 4.6 into Equation 4.2 for Cj and Sj of the Maxwell model, the
o following r.osults are obtained
{ " (Cj)m =1 - oy
;% (SJ,)m =1 - o, +-ad¢q:&; A-l[l-Kd cos @  cos 3 4.7
-z + % (Kd)2 (1~cos2 es cos2 £)]

Equations 4.7 will now be substituted into the basic aerodynamics equaticns

T et Mo T
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Table 4.1,
Definitions of A, K, and d obtained from the
results of chapter 3
Body
Shape A X d
r.Q
disk sin 6 Kd = "%— r’ = f—
s o 4
r, Q
cylinder - COS es sin g Kcy = —EZ- 1
ch / 4
. coos . . s = <. =1 - &
cone sin es sin § - cos es sin € cos & Kc U 2 1 Hc
! rSQ - 4@2 %
sphere 4’ sin GS - Zs sin & cos es KS = —ﬁ: zs (1- 2)
Table 4.2,
Values of the spin rate parameter, K, for
a number of past satellites
20 . 2
Satellite Orbit Altitude Spin rate 0 K
perigee - apogee (mi) (rpm) (10"3)
ESRO 2A 215 - 680 35 .350 - .519
ESRO 2B 205 - 677 35 151 - .223
1DSCS 19-26 20,940 - 21,068 150 2.29
ERS 16 110 - 2,260 10 .0197 - .0301
ERS 18 and 0OV5-1 5,357 - 69,316 10 .0306 - .238
0S0 3 336 - 354 30 .230
Explorer 32 173 - 1,629 30 169 - .227
ESsA 1 432 - 521 10 074 - .079
ESSA 2 843 - 885 10.9 .084 - ,086
ESSA 4 822 - 894 10 .078
ESSA 6 876 - 925 10 .078
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x
g obtajned in chapter 3. For the disk, cylinder, and cone, analytical results
i can be obtained. The equaticns of chapter [ expressing force and torque on
a spinning sphere are not integrable in closed form when Equations 4.7 are
A employed; however, the torque on a spinning sphere has been obtained analyt-
/ 'g ically in terms of the Maxwell model parameters by using frhe teciniques
I
employed in Reference 9, The results frow Reierence 9 Zor the sphere will
:ﬁ be given along with th: resulcrs for drag of a non-spinning sphere which can
2 /4
be btzined analytically from the equations given in chapter 3.
% :E. The results will be presented in terms of coefficients of drag,
T
; :I lift, and torque, which are defined as follows.
Drag coefficient = C_ = Drag
b U ZZ
]
Lift coefficient = C_ = Life
L 2~
I 5pU_"A
3

c_ = Torque
T 2= -

Torque coefficient =
%pUm Ar

where A is a reference area associated with the particular shape being .

studied. In addition, a reference radius Y is introduced in the expressions
I for coefficients of torque.
:E 4,1,1., Spinning Disk Properties in Terms of The Maxwell Model Paramaters

-

Substituting Equations 4.7 for the Maxwell model into Equations

. L ST T T TN T TGRS SRR RANLIT R

3.32 through 3.37 for the spinning disk at angles of attack 2nd integrating

over r’ and £ (0 to 1 for r’ and 0 to 2m for £) the following results are

e e s e A WP O AT o S, S T N aw
T el o adlhndbe,
S g &
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cbtained for the case of the spinning disk, (K =q rdz, T = rd))
C,=2sin6_ {2 sin2 8 +a, (1L -2 sin2 g )
D . s s d s
! 2
’ : — K4 2
+ daJl-dT sin O [1+—= (1 +sin es)]} 4.8
CLz = 2 sin {-2 sin 8, cos 6+ 2y sin 6 cos §_
’ o Kd2 2
- adJl-aT cos GS {1+ ry (1 + sin QS)]} 4,9
CL =0 4,10
X
CT:‘ =0 4,11
1&‘ -t
s
CT. = - (adJl-aT Kd sin es cos es)/Z 4,12
Is
CTk = - ad Kd sin es 4.13
s

A spinning disk is found to have drag and (lift)z coefficients
which are higher than a disk with zero spin rate. This increase in drag is
proportional to Kd2 which would be small for satellites.

Besides the expected slowdown torque, a spin induced precession
torque about the ys-axis is obtained which is directly proportioned to Kd.
The precession torque arises because diffusely reflected modules are re-
flected at a velocity relative to the surface which is higher on one half
of the disk when the disk has angles of attack other than T and zero.

2

4.1,2 Spinning Cylinder Properties in Terms of Maxwell Model Parameters

The coefficients of drag, lift and torque for the spinning
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cylinder at angles of attack are obtained by first substituting Equations

4.7 for the Maxwell model into Equation 3.42 through 3.47 for the cylinder,
These equations are then integrated over the surface area exposed to the flow
with respect to € from 11 to 2n. Letting A=2 rcy Land r = rcy the coeffi-

cient of drag, lift, and torque for the spinning cylinder at ingles of attack

are found to be

(@]
|

8 2 8 - 2
p = cos GS {3 cos es +ay 3 (3/4 - cos es)
X 2
TR c 2 .
+ Jag/lay cos 8 [1 + =L (4 - cos” 6 )]} 4.14

8 8
= f= : - L .
Clh cos es 3 cos es sin es oy 3 cos es sin es
X 2
o A s cy _ 2 )
+5 ad/1 ap sin 8 1+ 8 (4 - cos es)]} 4,15
Cc =cos 6 K _[-To + 24 J1-a, cos 6 ] 4.16
Lx s ¢y 274 3°7d T s '
C. =7Ta,sin6_cos g 4,17
Ti 274 s s
s
CT, = 0 4,18
i
s
CTk = - 2 Kcy @, cos es 4.19
s

The results obtained for the cylinder exhibit the same influence of
spin rate on drag, lift and slowdown tcrque as those of the disk. Unlike
the spinning disk, the spinning cylinder experiences a spin induced 1lift in
the negative x direction which is directly proportional to the spin rate :

parameter Kcy' This spin induced lateral rorce on the cylinder is analogous

e e ot e

|
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to a similar effect called the Magnus force which occurs on spinning cyl-
inders in continuous flow (see Reference 21), In free molecular flcw, the
lateral force is found, however, to be in the direction opposite that of
the analogous Magnus force.

—~—

The finite value of torque perpendicular to the spin axis obtained
in Equation 4,17 is due entirely to geometry and is not spin induced as was
found for the disk. The center of the surface arez exposed to the flow is
not at the geometric center of the cylinder but is a function of the angle
of attack. If end contributions were included in the development of equa-

tions, C would be zero,

T,
i
s

4.1.3. Spinning Cone Properties in Terms of Maxwell Model Parzwmeters

The coef’ :ients of drag, lift, and torque for the spinning cone
at angles of attac .. obtained by substituting Equations 4.7 for the Max-
well model into Equations 3.30 through 3.56 for the cone. These equations
can be integrated in general form by incorporating the angle P and integrat-
ing over the surface area exposed to the flow with respect to 2’ from 0 to 1
'‘and € from (m - B) to (2m + B). Letting A= rc2 and r = r, the coefficient
of drag, lift, and torque for the spinning cone at angles of attack are found

to be

- 2 re28 . -
CD R2 + ad [n cos es cot § cos B + - sin es RZJ

2
K -
—— c 2 g
+ advﬂ—aT [RS + = (R3 - Rg cos es)J 4.20

- e
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Torng  Fwmen)

cLz = -(1-ay (2R, sin & cos 8_ + 2R; cot § sin 6_)

Sramn)

+ ozd\/l-ozT [R4 cos es + R5 cot § sin es

o SERCRUEY

Koo

K2

c R
e t—— +
+ 4 {R4 cos es R_ cos 6 sin es.

?. 5
: - cos’ H
* cos es(R7 + R6) 4.21
1 s-ainze
P § m+28-sin2B8 |, 4 .
uLx = Kc 3 [ad (cos es cot § - + o Sin es cos B)
I

N-nv_ P_ -,a ’
+2a./ %p Py o8 6 cot § 4.22

& -

0
1-3 sin“6

i 1 3 sin26

9]
=]
{]
N
==}

1174 .2 21 X X
+ad3‘_n sin es cos B ncos es sin es cot & sin 2B

.. 2
- % cot:2 ) cos2 es cos B - 2R 1-3sing _!

] 2
M

1 sinzé -
? - F— 1-3 sinzé .
- gl [1, (2ete’s)
] .i 2/t s 3 sin’s
g - K 2 2
: I + -5 R, - cos® 6 R )(1—'5—§-1i-§>] 4.23
i & s s %6 2.
; 5 sin"d
! Ker 2 2 28 . 4
. - _ -c B - sin2B , 4 ; -
§ I CTj =-1 Lozd(cot & cos es g + - cot § sin es cos B)
: ° ra— 1-4 sin26—
I + ozd\/l-u,r 2R7 cos 8 — | 4.24
i sin §
i
= - 1 28 .
;[: CTK =-K a, (11 cos §_ cot & cos B + o Sin es) 4.25
s
The fun~tions Rl’ R2’ ---- R8 used in Equations 4.20 through 4.25
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are defined as folléws.

R

1

=]
i

-]
n

e
n

R. .=

Ry

Rg

6

2 2 2 , 2
- 3, cos GS cos” § cos B (sin” B + 2)
-2 sin2 8 sin2 6 cos B

T s

. » II I - j
- sin 8 cos 6 sin § cos & nt2B - sinZP
s s T

TN
~
~ ~

4 3 2 2
3 COS es cos” & cot & cos B {(sin” B + 2)

+ 2 sin3 ) sin2 ) mhag
s ™
. . Q nd i a
+ 3 sin © cos2 <) c052 § 2 sinZ
S S k1)

+ 12 sin2 f cos 6 sin & cos & cos B
n s s

cos2 es cos & cot § Eigﬁzi_giglﬂ

4
+.-.
- sin es cos es cos § cos B

+ sin2 6 sin § 2B
S v
-2 cos B cos 6§ cos B - sin & sin & mH2g
™ S s it

w28 - sin2 2

cos B cos §
s 2m

248 - sin4B + 2
161 3n

cos B8 cos §
s

- cos 8 cos 6 cos” B - sin 6_ sin § w28 + sin2B
s s 7m0

3n

248 - sin 48
16m

cos2 es cot § cos §

4 . 3
+ — n cos 6§ cos cos
3 si es N ) B

I3 - 1
+ 51n2 @ sin & mh28 + sin2f
s 211

+ = sin ® sin 6 cos B
i s

sin es sin § cos3 B
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In Equations 4.20 through 4.25, the value of the angle B depends
upon the angies es and 8§ in accordance with the three cases of surface ex-
posure defined in the last chapter for the cone. Using those definitions
the following ranges of B are defined.

Case I: tan es tan § > 1

=3

Case II: -1 < tan es tan § < 1

B = sin"1 (tan es tan 6) 4,26

Case III: tan es tan § < - 1

p=-3

. For case III, the coefficients of drag, lift, and torque all become zero
because the conical surface is shaded from the flow. <
The cone equations are found to be similar in form to those ob-
tained for the cylinder and disk, As in the case of the spinning cylinder,
a spin induced laterai force is experienced by the spinning cone at angles

of attack. The spin induced lateral force is found to be directly propor-

o
v

tional to the spin rate parameter Kc.
The cone is found to also experience a spin induced torque, per-
pendicular to the spin-axis, about the Y axis of the cone. The component
of torque about the X axis is not spin induced but is instead due to the()
moment of the drag and (1ift)Z forces about the center of the coordinate

systems. .

+

. B
SO

4.1.4, Spinning Sphere Properties 131 Teims of the Maxwell Model Parameters
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The sphere equations given in the last chapter must in genéral be
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evaluated by numerical techniques for all cases of the gas-surface inter-

action model. The equations given in chapter 3 are particularly useful
P

when applied to shapes such as spiﬁﬁing spherical caps, and hemispheres.
For the special case of a coTplete sphere, analytical solutions for the
torque components are given in Reference 9. The results qf Reference 9
will be given here and are the same 45 Qould be obtained by numerically

solving Equations 3.61 tbruugh 3.66.

. 2 - .
"Letting A=qr  andr = e the coefficients of torque on the

. .

.sphere are as obtained in Reference 9,

2

Cp. =0 . 4.27
i
s
CT. = (KS oy sin es cos es)/2. 4,28
Js
_ 2
i CTk = Ks @, (2 + cos es)/2 4,29
, s

The coefficient of drag for a non-spinning sphere, in terms of the Max-
well model parameters, can be obtained analytically from the equations

given in chapter 3. Letting

wis >l

Cp=2+ adJl-aI; K =0 4.30

The coefficients of drag and lift for the spinning sphere must be obtained

by numerical integration techniques and are therefore not, available in

analytic form.

4,2, Solutions in Terms of the Generalized Model Parameters

'4.2.1. Analytical Results (Zero Spin)
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For the special case of zero spin rate, the equations of chapter 3
can be integrated in closed form for certain cases of angle of attack,

These results are given in the following sections.

4,2,1.1, Drag and iLift of Flat Plate at Angles of Attack

The angle 6 for the disk (Equatiorn 3.31) becomes es for the case

when Kd = 0, Therefore,
- cos<2P +(1P) SS>
2
Cj qua cos . 4,31
and
sin (é P, + (1-P, ) 9;)
S, =o 4,32
j sin 9

which are independent of r’ and €.
Substituting Equations 4.31 and 4.32 into Equations 3.32 through

3.37 fur the disk with K, = 0, the following results are obtained after

d
integration over r’ from O to 1 and € from C to 2w. Letting A= rd2
cD=2sineS-2chT:oTjsinescos 2P +(2P)9-i 4.33
0, = 2 o /ia; sin ¢ sin E P+ (2-2)) es] 4.34
CLX = CTi = CTj = CTk =0 4,35

These equati.ns can be shown to reduce to Equations 4.8 through 4.13 ob-
tained for the disk in terms of the Maxwell model parameters by letting
Kd = 0 and substituting the appropriate terms for cj, aj, and Pj‘ Since
the repeated subscripts imply the summation over the J beam components,

Equation 4.34 for example could be written
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C = «2 siu 6
s .
Z J

L vt B

. {chl—aj sin (eJ. +6,)]

In Equations 4,33 and 4.34, the first approximation to ej has been

utilizied.

4,2.1.2 Drag of Cylinder with Axis Perpendicular to Flow

In the cylinder equations of chapter 3, the angle @, given by
Equations 3.40, becomes if K., = 0,
sin 6 = - cos 6 sin § 4.36
For tte case when the axis of the cylinder is perpendicular tv the flow
(eS = 0), sin 6 becomes
sin § = - sin §

For £ between 7 and 3m/2.

1\

cos 8 = - ¢os E

Thercfore, Cj and Sj become, for € between 1 and 3u/2,

cos [g P, + (1-P ) (-m +~§)]
C, = -0, J1-a, ] ! 4,37
i i j cos §

sin [T2, + (12 )+ )]
Sj = -cj,Jl-dj iin € ' 4.38

The coefficient of drag for this special case of the cylinder is found by
taking twice the value obtained by integrating over § from m to 3n/2.
Letting A =2 r,_y L, the drag coefficient of a cylinder is given by

m
cos 2 Pi

REnTE
( 57

C. =2+ 20../1-. P. 1, 3 4,39
D cJ,\/ on ; #

.
(JJPi)J
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s
for Pj = 1, the expression in the bracket should be %. A value of Pj = 3 can
b not be meaningfully applied to the cylimder problem unless a discontinuous
up
— linear relationship is chosen for the angle-of-reflection law., Equation 4.39
}
@b is valid only for values of P1 between 0 and 2. Equation 4.39 can be shown
- to reduce to Equation 4.14 for the Maxwell model by substituting the appro-
v
N priate values for cj, aj, and Pj. The other coefficients are all zero for
L this special case of a non-spinning cylinder at es = 0.
-
< 4.2.1.3. Drag of Cone with Axis Parallel to Flow
P For 2 non-spinning cone, Kc = 0, the expression for sin 8 reduces to
-%
sin § = sin es sin 6 - cos 6, gsin € cos §
- If es = %’ the axis of the cone is parallel to the flow and the above equa-
- tion for sin 6 reduces to
«k . . . .
sin & = sin es sin 6 = sin §
-
D or
% b
§ 8 =24
i
. Therefore, 6 is found to be independent of the variables of integration 4’
i >
HEE and €, For es = g the angle B is equal to a constant of g. Since the term ¥
; =* in Equation 3.50 is also independent of £’ and £, Equations 3.50 can be inte-
é s grated in closed form over £’ from O to i and € from O to 2m. Letting
3 *
7 e

2 . . . s . .
A= r, the following equation for the coefficient of drag of the cone is

obtained,

=2 - - I - 4
Cp 2 -2 Gj/l dj cos [2 Pj + (2 Pj) 6] 4,40

frreed B

1 The cone equation is fourd to have a form similar to that obtained for the

flat plate at angle of attack.
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4.2.1.4. Sphere Drag

The drag coefficient of a non-spinning sphere can be obtained from
Equation 3.6.1 by letting Ks = 0 and es = %. Then, sin 6 becomes
sin 9 = &'

the next step is to now change variables of integration so that

zl

sin v

or v =0

Substituting this into the expressions for Cj and Sj and then integrating

Equation 3.61 over E from O to 2m and y from O to % and letting A=nm rsz,
the following result is obtained
4(l-cos % Pi)
= + - . .
¢y = 2+ 0./l | XC= ): R 40,4 4.41

where for Pj = (0 the bracketed term should be zero. As in the results
obtained for the cylinder, Equation 4.41 for the sphere drag is valid only
for values of Pj between 0 and 2. A value of Pj of 4 could only occur if a
discontinuous linear relationship were chosen for the angle-of-reflection

lawv and in that case the equatioa obtained would not be the same as Equa-

tion 4.41.

4,2,2. Numerical Methods

For cases other than those given in previous sections, the ex-
pressions derived in chapter 3 for aerodynamic prcperties contain integrals
which must be evaluated numerically. In choosing a numericai technique,

practical consideration must be given to the computaticn time requived to
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obtain results of suitable accuracy which in turn is dependent upon the com-
puter being used to perform the computations. The numerical evaluation of
the expressions of chapter 3 were made on a Control Data 1604 computer with
an on-line video display system from which graphical results were obtained,

The numerical techniques employed are described in the following.

4,2.2.1. Single Variable of Integration

Results requiring integration over one variable, such as those of
the cylinder, were obtained by using the Gaussian integration formula over
and arbitrary interval which is given by

b

_b-a
F oo o= ! £(y,)
where
_ ,b-a bta
vy = G5 % v

The weights, w; 5 and abscissans, X, were obtained from Reference 22. The
twenty point formula, n = 20, was used in all cases. From tests, it was

found that at least five place accuracy was obtained by using this formula.

4.2.2,2. Double Integration

Results for the disk and cone require integration over two vari-
ables. For these cases, the region of integration was divided into squares
of equal dimensions, h. (This is nossible for the disk and cone since the
region of integration is always rectangular.) For each square, a nine point
double integration formula was used given by

1 9

~= [ J fGx,y) dxdy = £ o, £
. »y) dxdy o, £(x.,y,) + R
w? s =1+ 17H

- PR e e e e e mm e e~ e

AR R
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From Reference 22, the abscissas (x,,yi) and weights w, are given as
. 1

(xi »Yi) wi

(0,0) 16/81
+/2n,+ [3n 25/324
(.J 5 h, 2, /5 h) 5

o, * /-g— h) 10/81

& f2h, 0 10/81

where R = O(hé).

Tests showed that results of at least 5 place accuracy could be
obtained in using this formula by dividing the region of integration into
about 100 squares.

The above double integration formula was not applied to the
sphere because the region of integration defined by the shadow boundary
in the sphere is curved and cannot in general be divided accurately into

squares. Numerical resu’.s for the sphere were not obtained in this study.

4,2.2.3, Graphical Display of Results

In order to evaluate the expressions given in Chapter 3 at various
values of the quanities Pj’ es, K and, for the cone, §, a numerical inte-
gration must be performed for each case separately, Graphical results of
the variatvion in an aerodynamic property as a functio. of these quantities
were obtained by evaluating the equations at six or more separate values of
the quantity of interest and then using a2 six point Lagrange interpolation

formula to plot the curve. For the case of the cylinder, for example, 288

e ———— e - —— -- T s T . s
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separate numerical integrations were evaluated and stored on magnetic tape
corresponding to six values for each of the quantities Pj and OS and eight
values of Kcy. Graphs of any of the aerodynamic properties as a function
of any of the three quantities can be generated by obtaining the appropriate
values from storage and using the interpolation formula tuv obtain values

along the curve. Graphs are displayed vn a T.V. screen from which pictures

may be obtained. MNumerical results are also obtained.

4.3. Discussion of Results

The analytical solutions obtained in this chapter illustrate that
the gas-surface interaction strongly influences the aerodynamic properties
of both non-spinning and spinning bodies. For non-spinning bodies, the
drag coefficient is the principal aerodynamic property of interest. Fig-
ures 4.1 through 4.8 are plots of some of the analytical results obtained
on drag coefficient as a function of the gas surface interaction. s

Figures 4.1 and 4.2 are plots of Cp, given in Equations 4.8 and
4.33 for the flat plate versus angle of attack for various values of the
parameter o, of the Maxwell model and of Pj of the generalized model re~
spectfully. The parameters %y and aj were set equal to .5 and oj =1, and
the spin rate parameter Kd is zero. These two plots illustrate the effect
of the gas-surface interaction on determining aerodynamic properties. The

effect of backscatter reflections is illustreted in Figure 4.2 by the curves

for values of Pi between 1 and 2 and is seen to increase the drag coefficient

values at all angles of attack.

Figures 4.3 and 4.4 are plots of CD given in Equations 4.14 and

T e e i
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4,39 for the non-spinning cylinder (Kcy = 0) with the axis of the cylinder
perpendicular to the flow. Figure 4.3 gives the drag coefficient, using
the Maxwell model, plotted versus % for various values of oy Figure 4.4
is a plot of CD versus dj for various values of Pj which are the paraweters
of the generalized model. For values of Pj between zero and one, the range
ir drag coefficient is the same for both models. For values of Pj greater
ihan one, however, the generalized model gives higher values of CD than does
the Maxwall model.

Figures 4.5 and 4.6 are plots of CD given in Equations 4.20 and
4,40 for the non~spinning cone (Kc = 0) with the axis of the cone parailel
to tne flow. The half angle of the cone for these plots if 15°. Figure
4,5 gives the drag coefficient versus QT for various values of ad which are
the parameters of the Maxwell model. Figure 4.6 is a plot, also of the
drag coefficient, versus aj for various values of Pj which are the para-
meters of the generalized model. 1In Figure 4.6, the effect of backscatter
and over-specular reflections are both iliustrated. The curve for P, = -.2

shows that over-specular reflections give values of CD less than 2. In

general, over-specular reflections decrease the drag coefficient while back-

- scatter increases the drag coefficient.

Figures 4.7 and 4.8 are plots of CD given in Equaticns 4,30 and
4.41 for tﬁe non-spinning sphere. Unlik. the previous plots, the two plots
of sphere drag coefficients are very simi.ar {or the two cases of gas-surface
interaction models, Figure 4,8 illustrates again that backscatter causes
increased values of drag coefficient. The results shown in Figure 4.7 us-

»

2
ing the Maxwell model are different than results given by Cook 3 which are

v
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similar to those given in Figure 4.7 except that the magnitudes of drag

coefficients are different in the two plots for the same values of oy and
aT. For example, at ad = 1 and o = 0, Reference 23 gives a value of CD
for the sphere of about 2.89. Figure 4.7 (Equatior 4.30) gives, however,
a value of 10/3 for CD of the sphere at oy = 1 and Uy = 0. The difference

between the two results is because the results in Reference 23 were ob-

tained from Reference 15 in which Schemberg obtained the equation of CD for

"the Maxwell model for a certain choice of parameters in his model, 1In

reducing the Schamberg wmodel to the Maxwell case, the distribution of
velocities proposed by Schamberg were still retained which, as discussed
in chapter 2, introduces a factor of 2/3 in the coefficient of VE:&;.
The effects of spin on the aerodynamic properties, is well
illustrated, for the Maxwell model, by the analytical results given in
section 4.1 of this chapter. In general, the results show, for the case
of the Maxwell model
1. As the spin rate increases, drag and (1ift)z increases.
The increase is proportional to KZ.
2, A gspin induced lift force in the lateral direction,
(1ift)x,occurs for elongated bodies at angles of attack.
The lateral force is directly proportional to the spin
rate parameter, K,

3. Spin induced torques perpendicular to the spin axis are

experienced by all the shapes at angles of attack, except

the cylinder.
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4, The .slowdown. torque on a spinning body is directly

=]

s B L]

LY

proportional to XK. Also, for the four shapes studied,

the slowdown torque is uirectly proportional to oy

gnd indepéndent of oy,

The effgcts of spin described above were also found, in general,
for the case of’the generalized model. The results for the case of the gen-
er;llzed model were obtained by.numerically evaluating the expressions given
in chapter 3. .

The numerical results showed that drag and (1ift)z increased with

e increased values of K and the.increase was roughly proportional to Kz, The

[ Saaatid

.numetrical results also showed that a spin-induced lateral force was experi-

ey

<nced by the stinning cylinder and cone which is roughly ;roportional to K.

As for the case of the Maxwell model, no lateral force was found to occur

- for the spinning disk. The numerical resuits for torque perpeundicular to

the spin axis also showed the same dependence on spin as indicated by the

anglytical results obtained in terms of the Maxwell model parameters.
Numerical results obtained for slowdown torque on a cylinder in

terms of generalized model parameters are given in Figure 4.9, These re-

== 7 73

sults show that the slowdown torque is a function of both ., and P.. For

the case of the Maxwell model the slowdown torque is dependent on only

‘wv

one of the model parameters, « The numerical results for the :slowdown

a

torque of a spinning disk were similar to those obtained for the cylinder.

.y

Iy

4.4, Conclusions

- Two conclusions are evident from the results cbtained in this
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Figure 4.9. Coefficient of slow down torque on a spinning cylinder
at zerc angle of attack as a function of the generalized
model parameters.
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chapter. First, the aerodynamic properties of both non-spinning and spinning

o |

bodies is strongly affected by the gas surface interaction. Secondly, dif-

ferenc shapes have functionally different dependence on the gas-surface

o)
X M

interaction parameters of a particular model.
These two conclusions suggest that gas-surface interaction experi-
ments could be performed in which measured aerodynamic properties of various

shapes could be utilized to obtain information on the gas-surface interaction.

Since the spin induced torque and (lift)X propertiec are also strongly de-

=y

pendent upon the gas-surface interaction, considerable information on the

Pe
gas-surface interaction could be obtained by making measurements of these

.

aerodynamic properties of spinning bodies as a function of angle of attack.

The high velocity, largely neutral, free molecular gas flow generated by a

b
i g, The possible experiments suggested by the results of this chapter
- m
P £
33 would be difficult, if not impossible, using current laboratory methods.
18
; ? - It is, therefore, proposed that the aerodynamic properiies of spinning
>
i g satellites be utilized to obtain information on the gas-surface iuteraction,
> ¥
v s
£
i
i

satellite's motion through the atmosphere are almost ideal experimental con-

.

ditions for performing gas-surface interaction experiments. Tne remainder
, of this study is directed toward determining the feasibility of performing
- the satellite experiment suggested by the results of this chapter. Toward

LY

this end, the aercdynamic properties of spinning satellites arez obtained in

: the next chapter.
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5. AERODYNAMIC PROPERTIES OF SATELLITES

In chapter 4 the aerodynamic prop"rkies of bodies in a free
molecular flow were determined for the case when the flow is stationary'
with respect to the body. 1In this chapter the aerodynamic properties of

«
satellites is investigated for when the gas flow is no longer fixed in
direction.

The instantaneous aerodynamic properties of a satellite can be
found at any part in its orbit by a suitahkle coordinate transformation
of the equations obtained in the preceding chapter, Since measurements
of satellite aerodynamic properties are not usually made on ag instanta-
neous basis, the average serodynamic properties of a satellite over one
orbit is investigated to determine how these average properties depend
upon the gas=~surface interaction.

The results of this chapter will be used in chapter 6 to study
the feasibility of performing a satellite experiment to measure gas-surface
interaction parameters. The equations and procedures develaped in this
chapter can also he applied to the problem of a tumbling non-spinning
satellite. This application is illustrated by obtaining the average drag
coefficient for a tumbling non-spinring disk as a function of the parameters

of the Maxwell gas-surface interaction model.

5.1. Coordinate Transformation

In the equations developed in the preceding chapters, the aecro-

dynamic properties of the various shapes were referred to a coordinate
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system which was assumed fixed in inertial space and attached to the free

L S R

stream velocity, ﬁw. For a satellite in orbit about the earth, the coor-
dinate system attached to ﬁ; rotates in inertial space as the satellite

travels in its orbit. Since the torques acting on the satellite must be
referred to a non-rotating coordinate system, a new reference frame which

is attached to the orbital plane of the satellite is chosen. For the pur-

poses of illustrating the aerodynamic properties of satellites and the

feasibility of the proposed satellite experiment, the orbit is assumed to

e

be circular and have fixed orientation in inertial space*. The atmospheric
§- density is also assumed to be constant over the orbit,

The initial orientation of the satellite spin vector in the or-
g; bital reference frame (xo,yo,zo), is shown in Figure 5.1. The XY, plane

is in the orbital plane of the satellite and z, is the normal to the or-

-
- bital plane, The free stream velocity vector, U;, rotates in the xo-yo
- plane at a constant rate, o, equal to the angular velocity of the satellite's
*
L

=
orbit, For convenience, the satellite spin vector, Q, is chosen to be

initially in the X,"2, plane at an angle )\ from the normal to the orbit, z,-

With the above definitions, spherical trigometry can be used to

r

l, find the angle es in terms of the two angles A and «. This expression is
- given by

- es = sin—1 (cos @ sin A) 5.1

where GB is the angle between z and a. (The notation and definition of 68

*In general, the orbital plane is not an inertial frame of reference since
the non-spherical distribution of the earth's mass can cause the orbital

— plane of a satellite to rotate in inertiai space. This effect and other

perturbing effects of the space environment are not included in this study.
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Figure 5.1, Notation and coordinate systems.
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used in Equation 5.1 is consistent with that used in the equations of pre-

|
I
[
g‘ ceding chapters.)
|
[
E
L

5.2, Instantaneous Aerodynamic Properties of Satellite

By substituting the expression for @, given by Equation 5.1, into
the equations of the preceding chapters, the aerodynamic properties of a

satellite can be determined at any position, ¢, in the orbit. For later

&sﬂ%ﬂ'ﬂ%ﬂm&»\' ".f‘vi',..,{ Y e R ] R RS A

F il

applications, it is desirable to divide the instantaneous force and torque

W
¥

or: the satellite into components associated with the XYy 02, coordinate

system.

i S TR R A

g’ 5.2.1, Components of Force

9

The force acting on the satellite at any position « in the orbit

-
is divided into a drag component in the direction of U and two components

-—
of 1if’, normal to Uw. For force, a coordinate system x 2 o2 is defined

which is associated with the X sY 02, system as shown in Figure 5.2. The

plane. The z-axis is in the same direction as the zo-axis and the x-axis

g: yf—axis is in the direction of positive ﬁw and is therefore in the XY,
%; then completes the triad. The force on the satellite is then divided into

compcnents of (drag)¥in the direction yf;(lift)xf, which is in the plane of
E: the orbit; and (1ift)xf, which is normal to the orbital plane.

The components of force defined in the preceding chapters

o

(drag)y, (1ift)x, and (fift)z are referred to the XerYesr2g system by per-
forming the proper coordinate transformations and using Equation 5.1.

The results are
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cos A\ . sin @ sin A7 . ] .
..—4. e —————————— +
[(1 py (11ft)z o5 6 i [drag i
S S
+ [:(1ift) i’.‘ﬂ.—a_slrl_}l + (1lft) cos A ] 5'7_
X cos es cos 6 f

where if,jf,kf are unit vectors in the x Vg2 system and where

£
%
= <1-cos2 o sin2 i)

Aerodynamic drag and lift forces are known to affect the elements
of a satellite orbit, In terms of the components of force given in Equation
5.2, the principal effect of drag and (liJ.t)x (component of force in the i

f
direction and in the plane of the orbit) is to causz the semi-major axis of

f

the orbit to decay aud cause the eccentricity of the orbit to decrease to
zero (see for example References 24, 25, and 26), The third component of
force, (lift)zf is normal to orbital planme in the direction kg, This force
causes a torque on the orbii and has the effect of causing the orbital plane
to precess in inertial space which is analogous to a gyroscope precessing
under the action oféan external torque,

A complete study of the perturbating effects of drag and lift must
necessarily include also other perturbating forcec of the space environment
such as solar radiation pressure and gravity gradient forces. Such a study
is beyond the scope of the present work. For the purpose of the present
study, consider the torque on a circular orbit caused by the (11;&) com-~
ponent of force. The radius vector, ro» from the center of the earth to
the satellite is given by

-y
r =z sinoi_~-r cosd« j 5.3
0 Q ) [o] (o]

The torque on the orbit is then given by

JRR. - - B ——n B L
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(e

-w

. - -) .
: T =r X (lift k 5.4
b = ) ) ( )zf £
b Since k_ = k
3 f o [
.: - i
I T =-r coso& (Lift) i - r sino (l.£ft) 3§ 5.5
T ) 0 z. o0 ) z,. Jc
; LE f f
b Define the coefficient of torque on-the-orbit to be given by
{ - ¥ 2
r C. == Ax 5.6
o T o/% [0 Uw r,
. o
( “s —
; where A is the reference area of the satellite.
T
o Using Equations 5.5, 5.6, and the kf component of forces given
; . in Equation 5.2, the coefficients of torque on-the-orbit about the X, and
{
oy Y, axis, respectively, become
}
v ~cos @ sin & sin )\ Cos @& CoS A
‘ . C = - ————— .
R ( T )x cos 8 CL cos 8 CL 5.7
; oo s X s z
Lo -sin® @ sin A in o A
3 . (CT ) - COSs Zln CL B Slnccscgs CL
Y T ek ~
; o Yo s b4 s z
: -5
H ;
i 5.2.2. Components of Torque Acting on Satellites
§ -
Col The torque acting on the satellite at any position @ in its orbit
i -~
- is divided into a slowdown component in the direction of ), and two com-
Coai . - ) X
: ponents of torque perpendicular to (2. For satellite torque, a coordinate
oo system x;, yé, ké is defined which is associated with the X Y402, system
. .« ¥
} -
: as shown in Figure 5.3. The z;-axis is in the direction of @ and is there-
o
Pl fore in the X -y plane. The x;—axis is in the same direction as the y -axis.
-s The y;—axis then completes the triad., The comgonents of torquz on the
¢
L satellite are then denoted by a slowdown component, Tk" in the direction
s
- -
f Q; a TX/ component of torque in the plane of the orbit and in the direction
-t 3
: .
-
{ &

- et e - B T T T - *%;g‘ N T
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X3 and a T,/ component which is out-~cf-the-plane of the orbir Ly the angle
5 -
A. rhe components of torque perpendicular to Q causec precession wiich also

has cumponents out-of-the plane and in-~the-plane of the orbit.

The components of torque defired in the preceding chapters (Ti R
s

T, , and T
i) k
S s
proper coordinate transformation and using Equation 5.1. The results are

) are referrzd to the x;, y;, z; system by performing the

el cos & cos A sin & ,
T=[T 022 208 A, 2EEE] Y
i cos € j. ces 86 0 s
5 s s
~ K k
+ lT' sino . . cos & Cos j'
L cos © i cos © s
s s s s
+ 1T ]k' 5.9
L ks s

This equation and the equation of the previous section allow the resui.s of
chapter &4 to be used to find the instantaneous aercdynamic properties of a
satellite at any point & in its orbit,

[

5.3, Average Aerodynamic Properties of Satellites

The average aerodynamic properties of a body is defined by the

equation
TI
f c©de 5.10

(o}

C =

Hh—=

where C represents the aercdynamic property being averaged and T' is the

time interval over which the average is taken. As a satellite travels
-

through its orbit, the velocity vector Ug rotates in the XY, plane.

The positioa of the velocity vector is determined by the angle o at a

given time t. For he purposes of the present study, consider the case of
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a satellite in near-earth circular orbit. If the altitude loss due to the

action of aerodynamic drag is assumz2d to be small, the angular velocity of

the satellite's orbit can te approximated by a constant datermined by tbe

average radius of the orbit for a single pass about the earth. S%pifgrly,
Ve

an average circular velocity equal to the free stream velocity YR and an

average atmospheric density p can be approximated by constants,

For a constant angular velocity & = w, Equation 5.4 can then be
changed to an integral of the angle o over 2rr for one complete orbit. The
equation for the average aercdynamic properties of a satellite over one
complete orbit is ther given by

p E=1—j2“0da 5.11
21 0

Equations 5.2, 5.7, 5.8 and 5.9 can then be substituted into Equation 5.11,
with the appropriace equations from the preceding chapter, to determine the
average properties of satellites,

r

5.3.1., Spinning Disk

@

In general, the evaluation of Equation 5.11 involves the use of
numerical techniques. For the case of the properties of the spinning disk
in terms of the Maxwell model parameters, however, Equation 5.11 can be
evaluated analytically. The procedure is to first substitute Equations 4.8
through 4.13 for the disk into the equations for the instantaneous aero -
dyanmic propertizs given by Fquations 5.2, 5.7, 5.8 and 5.9, Equation 5.1
is vsed to replace es in terms of ¢ and A. These results are then sub-

stituted iato Evvation 5.11 and integrated to find the average properties
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over one orbit. Two cases are considered: 1) spinning disk wity one side
exposed to the flow and 2) spinning disk with both sides exposed to the
flow. The results of the first case can be applied to problems such as a
spinning cylinder or spinning cone in which the ends of the cylinder and

base of the cone can be represented 2~ spinning disks.

5.3.1.1. Spinning Disk with One Side Exposed to the Flow

Following the procedure outlined above, the results for the

average properter of a spinning disk with one side exposed to flow are

- - 8 3 2 8
’ = — 3 A r~ {(—~ - ———
| CD 3 sin” X + oy < sin A p sin® K)
: 2 3 .4 "
+ qdjl oy [— sin” A + Kd ( 31n A+ o7 sin A1 5.12
CI,, =0 5.13
i
s
C =. 1 -
Cp | = 5 dJl ay K, sin A cos A 5.14
Jg
Cp = 2y Ky osin ) 5.15
k
s
lm ___8_. - 3 2
\CT )x = 3 (1 ad) sin” A cos A
oo
1l 3
- ad,Jl aT d ( sin A cos A + < 51n A cos ) 5.16
(CT )y =0 5.17
0”0

5.3.1.2. Spinning Disk with Both Sides Exposed to the Flow

The procedure to be followed for the case of the disk with both

sides exposed to the flow is the same as above except that, when the flow
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is on the '"back-side" of the disk, appropriate changes in signs must be made
on Equations 4.8 through 4.13 to account for the fact that the spin rate

-—f
vector () is in the opposite direction. The results are

= 16 . 3 4 . _ls .3,
CD 3, Sin PR oy (Tr sin A 3y Sin )
— . 2 2 1 .2 .3 4
+ adJ1~aT [sin” A + Kd (8 sin” A + 32 Sin ] 5.18
CT./ =0 5.19
i
s
CT./ =0 5.20
s
- - ]
CT , *oy Kd sin A 5.21
kf-
Ty =16 gy 2
(CT )x =" 3 (1 ad) sin” A cos A
o ‘o
- addl-aT Kdz (% sin A cos A + %E sin3 A cos \) 5,22
\CT )y = 0 5.23
oo

For the case of beth sides of the disk exposed, the torque perpen-
dicular to the spin axis of the satellite is found to average to zero over
one orbit, The average 4drag and torque on-the-orbit about the X axis is

found to double as would be expected.

5.3.2. 8&niuning Spherical Satellite

ey

AT e i A i = e 2

The average coefficients of torque on a spinning spherical satellite
can be obtained in terms of the parameters .f the Maxwzll model from Equations

4.27 through 4.29. The results are

e e v mi TaTeer - A T T e o e = oo e o

ENERD
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C., =0 5.24

i,
S

C -1 K o, sinu A ces A 5.25
™, 4 s 7d )
JS'

c <-4 - a2 s

CT =-% KS @, (6 - sin” ) 5.26
kS/

Unlike for the case of the disk, the average, over nne orbit, cf torque

perpendicular to the spin axis, &T , is found to be finite for the case

s !
J
of a spherical satellite. s

5.3.3. Spinning Cone-Disk Composite Satellite

Consider a satellite composed ~f a cone spinning about the axis
of the cone and a flat base represencrd by a spinning disk. For convenience,
consider the center of mass of the catellite to be at the center of the base
of the cone. For purposes of illustration the gas~surface interaction will
be assumed to be of the Maxwell type. The equations expressing the aexo-
dynamics of the spinning cone at angles of attack have been obtained in
analytical form in terms of the Maxwell model parameters and are givemn by
Equations 4.20 through 4.26 in chapter 4. Since a cone-disk composite
satellite is a convex body, Equations 5.12 through 5.17 for-  he -disk with

one side exposed tp the flow can be applied directly. The si<sn of E&

s /!
3
(Equation 5.14) is’ reversed for thic application since only the "back-"®

side'" of the spinning disk is exposed to the flow.
The average properties of the cone part of the spinning cone-disk
composite satellite are obtained using the numerical techniques described

previously to perform the integration over « in Equation 5.11., For example,
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for a cone of a half angle of 15° and A = 45° the following results were

obtained numerically.
= 1

—— 2
= ——— r . ’ A (4
Cp = 5n (15.4 + .45 oy + ap/lray (10.5 + 2,04 K7)] 5.27
C. ==[-3.12+3.1a - afT-a, (1 3+ 8.7 x 107° k%)) 5.28
t T, om e %y TS ‘ :
A S
x C. =i-[-.402Ka, - aica. (2.3 X 102K + 8.2 K9] 5.29
; T,, 2mt ‘q T YVt fee - '
J
S
CTk/ = o X oy 5.30
S
i
©. ). =i=[-1.22+ 1.22 a, - a,/T-a. (.85 - .38 ¥2)] 5.31
a T x 2w LT e2 %y T b 2 E :
4,
— 1 —— .
i (c:To)yo = 5n [2.76 Koy - ozd\/l-d,r (1.07 K)] 5.32

The average properties of a cone-disk satellite are a function of

-

the cone half angle 6§ and the angle A. This functional dependence is illus-
§ tirated in Figure 5.4 where the average drag coefficieat is shown plotted as

a function of the angle N\ for various values of the angle §.

o= 5.4, Average Aerodynamic Properties of Tumbling Bodies

The average aerodynamic properties of a body which is tumbling in
a random manner can be found using the techniques devaloped in this chapter,
Let the orientation of the body with respect to the flow be determinmed by

the angles o and A, If tte orientation is completely random, all values of

A between 0 anc 11 and of @ between 0 and 27 occur for an equal amount of
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time. The average of an aerodynamic property for a random-tumbling body

is expressed by
1 2

— m T
c==J [ csin)rara 5.33
b o o

where C is the aerodynamic property being averaged (see Reference 27).
A single exawple of the application of Equation 5.33 is given in

the following for the case of a non-spinning disk.

5.4.1. Average Drag Coefficient of a Random-Tumbling Disk

The instantaneous drag coefficient of a disk in terms of the
parameters of the Maxwell model is given by Equation 4.8. In terms of
the angles @ and ?. the instantansous drag coefficient for zero spin rate
is given by

= _ 3 . 3 . 3 . 3
(LD) = 4 cos” o sin” A + ad(2 cos @ sin A - &4 cos” @ sin” A)
disk 2 2

+ adJl-aT Z cos” a sin” A 5.34

Due to symmetry, the integration of Equation 5.33 for the disk can be ob-

tained as eight times the integration over « from O to g and \ from O to g.

The result is

= 2
= 4 £ -
(CD)diSk i+ 3 o /1 Up 5.35

The average drag coefficient of the random-tumblipg disk is found to be
considerably less than the maximum possible drag coefficient of four for a
staticnary disk normal to the flow. The average drag coefficient given in
Equation 5.35 is exactly half the drag ccefficient of a sphere (see Equation

4,303,

Approximation techniques have been commonly employed to determine
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average drag coefticients of tumbling bodies. The results of two approxi-
mation techniques applied to the disk problem are given for comparisén to
the results given in Equation 5.35. Using results obtained by Schamberg
(Reference 15)

(CD) %3+ 2 adJl-aT 5.36

Using techniques developed by Sentman and Neice (Reference 27)

¢ " - Moo
\CD) ~ 85 - .42 o+ .42 advﬂ A 5.37

The approximation techniques used in Reference 15 (Equation 5.36) are seen
to give a drag coefficient three times greater than thgt given by Equation
5.35. The approximation technigue of Reference 27, on the other hand, gives
slightly lower resulis tharn that given by Equation 5.35, but the percent

error is considerably less than the results of Reference 15.

5.5. Discussion of Results

The results obtained in this chapter have been limitcd to the use
of the Mazwell model because analytical expressions cculd be obtained in
most of the cases studied. The procedures used to obtain ’'hese results are,
however, equally applica%le to problems using the generaiized model if
numerical methods are employed.

The results obtained have shown than the iverage aerodynamic pro-
perties of a satellite are of the same form as those obtained in chapter &
for stationarv flow conditions. The average a:rodynamic properties are
found also to be strongly dependent upon the paramecers of the gas surface

interact.ion model. In general, the averare aerodynamic properties of
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satellites can be expressed in the following form as a function of the para-

meters of the Maxwell model.

CD = A1 + ad A2 + o l-aT A3
C'ri, =B +a;B,+ adJl-aT B,
)
- — 5.38
CT., = C1 + @y 02 + adJQ-aT C3
]
S
CTk’ =D ad
s

where the coefficients A, B, etc., are functions of the angle A and the spin
rate parameter K, and also the half angle § for the cone.

It is, therefore, evident that,as for bodies in a stationary flow,
the possibility exists of utilizing measured, average satellite-aerodynamic
properties to obtain gpecific information on the gas—surface interaction.

The feasibility is assessed in the next chapter of performing a satellite
experiment to determine gas-surface parameters by measuring the average aero-

dynamic properties of satellites.

[ U
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6. FEASIBILITY OF A SATELLITE EXPERIMENT TO DETERMINE THE GAS-SURFACE

INTERACTION PARAMETERS AND THE ATMOSPHERIC DENSITY

The results of the preceding chapter have indicated clearly the
possibility of utilizipng measured aerodynamic properties of satellites to
obtain information on the gas-surface interaction. The feasibility of
this experimental conzept ig discussed in this chapter.

The obvious advantage of designing a gas-surface interaction ex-
periment using satellites is that a free mclecular flow of high velocity
neutral molecules is generated by the motion of the satellite in its orbit,
As discussed earlier, it has not been possible to duplicate these flow
conditions in the laboratory. As with all experiments, even those per-
formed under supposedly controlled conditions, information obtained on the
gas-surface interaction from the analysis c¢f satellite aerodynamic pro-
perties would be subject to certain uncertainties associated with the ex-
periment. For satcllite experiments of the type proposed in this study,
uneertainties associated with ¢ pace environment could influence the
interpretation and accuracy of results., A complete discussion of the
major uncertainties and their influence on the proposed experiment is
given in the latter part of this chapter. However, since the uncertainty
associated with the orbital gas-density is of major importance to tha
proposed experiment, this subject is discussed in the following.

The reason for the uncertaianty in orbital gas-density can be
traced to the lack of knowledge orn the drag coefricient of satellites
winich, in turn, is related to the uncertainty in the gas=-surface intzr-

action. As an example, consider the measurement of the drag of a satellite
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in which the drag is related to the density by the drag equation given by

1 27
Drag = 5 P v, A CD

In order to determine the atmospheric density p from the drag measurement,

the drag coefficient, C_, of the body must be known. Due to the lack of

D
knowledge on the gas-surface interaction, an assumed value of the drag co-
efficient of 2.2 is commonly used to reduce drag data.28 From the results
of chapters 4 and 5, it is seen that this assumption could lead to consider-

able error, perhaps 50% or greater, in the determinatior of density depend-

ing upon the actual values of the gas-surface interaction parameters and the

shape of the body.
It is apparent from the above discussion that a satellite experi-
ment designed to obtain information or the gas-surface interaction must,

also, simultanecusly, obtain information on the atmospheric density. For

this reason, then, the satellite experiments proposed in this study ere de-
signed to determine the value of the atmospheric density in addition to

determining the values of gas=surface interaction parameters.

6.1. Gas-Surface Interaction Experimencs Utilizing Satellite Aerodynamic

Properties

Two criteria muzt be met in order to utilize measured aero-
dynamir properties of satellites to obtain information on the gas-surface
interaction and atmospneric density. The first criteria is that the number

of aerodynamic properties measured must at least eyual the number of un-

known quantities to be determined. The sz2cond criteria is that the equations
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expressing the measured aerodynamic properties in terms of the unknowns'
must form ar independent set of equations which can then be solved for the
unknowns.

Two general classifications can be made of pcssible methods of
utilizing satellite data which could satisfy the basic criteria given above.
These classifications of pugsible methods are:

Method 1: Utilizing data (such as drag) from a nvmber of
differently shaped and/or differently oriented
satellites,

Method 2: Utilizing data on a number of aerodynamic pro-~
perties of a properly designed satellite.

The methods of analysis are similar in both classifications. In Method 1,
daeta on past or existing cateliites would be used while in Method 2 a
satellite is to be designed for the specific purpose of obtaining informa-
tion on the gas-surface interaction., It is not suggested, however, that
either of the two methods be used exclusively. In fact, as will be pointed
out later, a combination of the two methods appears desirable in terms of
a long range program to cbtain information on the gas—surface interaction
as a function of the surface conditions and also to obtain ianformation on
the density and composition of the orbital gas environment.

et

The procedure, advantages, and disadvantages associated with
the two methods ave discussed in the following two sections. Later in this
chapter the feasibility will be illustrated of using Method 2 to determine =

the parameters of the Maxwell model and the atmospheric density.

Ftl
~-
o
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6.1.1, Method 1l: Utilization of Data From Satellites of Different Shapes

In chapter 5 it was found “hat the average aerodynamic properties
of satellites are dependent upon the parameters of the gas~surface inter-
action. In addition, the angle A ,which is the angle giving crientation of
the satellite spin axis with respect to orbit was also found to have an
influence on the coefficients of the unknown parameters. These two factors
are to be considered in utilizing data from satellites of different shapes
and orientation in making the measurements.

To begin the discussion of Method 1, consider that, for example,
drag data were available on a spinning disk, a spinning cone (with flat
base) and a non-spinning sphere. Consider that each of these satellite
shapes has the same surface properties, ace all in the same circular orbit,
and that the gas density is constant over the orbit. Under these considera-
tions and the assumption that the gas-surface interaction is of the Maxwell
type, the drag measurements of the three would provide sufficient informa-
tion for the determination of the parameters 04> G and p. The Zact that
the values of ays aT and p can be determined can be verified from the equa-
tions given in chapter 5 for the spinning disk with both sides exposed
(Equation 5.18) and the numerical results given for the conc-disk satellite
(Equation 5.27). The average drag for a non-spinning sphere would be the
same as that given in chapter 4 for stationary flow, (Equation 4.30). These
three equations satisfy both criteria of the experiment, as can be easily
verified. Using the same set of equations one could also verify that two
spinning disks at different angles A to the orbital plane could also provide

a system of independent equations when combined with either the cone-disk

Al ten o s
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or sphere equations. One can also easily verify that measurements of drag

‘
.

Ve on, for example, three different sized spheres would not lead to an indepen-
P dent set of equations which could be solved for ad, QT’ and p.
The possible experiments discussed above concern the determination
‘ of the parameters of the Maxwell model. The same procedure would be used if
instead the generalized gas-surface interaction model is used. In order to
., use the generalized model, numerical methods would have to be employed
.- throughout the analysis.
The ideal conditions considered above would not occur in practice.
In the actual application of Method 1 of using past drag data, assumptions,

i which would introduce errors into the analysis, must be made in order to use

.. data from different satellites, One assumption that may have to be made is
. e that the gas-surface interaction is the same on all the satellites being used
‘ in the analysis. Also, in order to analyze dats from satellites in non-
circular orbits, an assumed atmospheric density model must be employed. The
same model would also have to be employed in order to use any data from
satellites which are in different orbits. In addition, the satellites would
- have to be assumed to be approximated by convex shapes, since there is at
present no adequate method available to analyze concave shapes.

In light of the many assumptions which must be made in the analysis
of existing satellite data, it is concluded that data from a large number of
satellites would have to be analyzed and correlated in order to reduce the
e errors introduced by the assumption. The results of such an undertaking

.. could, however, yield a considerable amount of information not only on the

‘ gas-surface interaction, but also on the validity of the assumptions used,.
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such as the atmospheric density model.

6.1.2. Method 2: Utilization of Data From a Single Satellite

The design, manufacture and launching of a satellite is an expen-
sive operation and therein is the principal disadvantage to Method 2 in com-
parison to the less expensive analysis of existing data of Method 1. There
are, however, many advantages to a Method 2 analysis which would utilize data
from a satellite which is specifically designed to obtain information on the
gas—-surface interaction. The principle advantage would be the accuracy of
results obtained, an accuracy which in all probability, could not be obtained
in an analysis of past satellites.

In order to illustrate the basis of Method 2, consider the cone-
disk satellite which was analyzed in chapter 5. The average drag and torque
coefficients of the cone-disk satellite were of the following form in terms

of the parameters of the Maxwell model.

Cp= A +Ax, + A3ad ,\/l-af,r 6.1

Cp =By + By + B, A/l-ozT 6.2
p

C,l,s = adC 6.3

where ED is the average drag coefficient, ET is the average coefficient of

P —
torque which acts perpendicular to the satellite spin axis (CT will be

p
interpreted later as being the coefficient of either the i's-or j's component

of torque), and CT is the average coefficient of slow down torque which is
s

in the direction of the spin axis. The coecficients Al' A2, 13, Bl’ BZ’ B3,

vt ettt ot o e 4
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rmond

and C are functions of A, §, and K as discussed in chapter 1.

Consider now, that D, Tp, and TS are measurable quantities so that

- o

the following set of equatiosas could be obtained

Blnmcr

* l 2—-_ . T
i D —-D,"ZUOOA-—A‘p%Azpdd+A3pad;\/IaT 6.4
c * 1,252 —
! = T = + - .
: r[ Tp '1/2 N,ArK=5 o+3B,pay B3pad,\/la',r 6.5
; T“'=T/—-U ArK=Cpa 6.6

s d

% % * .
in which D , TP , and TS are known from measurements, These three equations

satisfy the two basic criteria established previously. Solutions for g, ad’

*
and op can be obtained analytically in terms of the measured quantities D ,

I}

Tp , and Tﬁ and the coefficients A AZ’ etc. These results are
>

* % *
T CA,~-DCB,+ T

I g T Ty (BB - AsBy) 67
p= CE .
. T *
i E 4 +TS E
i oy = T x 6.8
= M - + "
r TP CA3 D CB3 (A2 3 - A P ) T
&
* * *
- -T CA *DCB - T (AB; -AB)
1 Jl-aT = o 6.
T E
s
‘[ where E = A3B1 - A1B3.
The cone-disk satellite is one example in which the aerodynamic
£ properties do provide equations which satisfy the basic criieria. This is
, L not generally true of other satellite shapts. For example, tht sphere equa-

waw

tions given in chapter 5 show that E& and ET for the sphere are not inde-~

P s
pendent. In another example, the equations for the disk with both sides

R, Y W T BT Yk

S

exposed show that CT is zero and therefore the first criteria is not

Uawi howwn  Boweey
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satisfied,.
As in Method 1, the Maxwell model is used as a convenient example.

The technique of analysis is, however, also applicable to the determination

of the parameters of the generalized model, if numsrical methods ar: employed.

6.2. Accuracy of a Satellite Zxneriment

The accuracy of determining the gas-surface iuteraction parameters
and the atnospheric density in a satellite experimeat is, of course, depen-
dent upon the accuracy of the measuremeat: of the average satellite aero-
dynamic properties. The accuracy is also aupendernt, however, on the shape or
shapes of satellites from which data is obtained. For exuample, if dvrag
measurements were made on three satellites which differed only slightly from
that ¢f a sphere, a solution would not be possible because even minor errors
in drag measurements would be greatly amplified. These factors are illus-
trated by taking the specific example of the cone-disk satellite used in the
previous section.

The accuracy of determining the unknown parameters p, ad’ and o

%
using a cone-disk satellite is dependent upon the accuracy of measur®i1g D ,

.

% %
Tp and Ts . An estimate of the errors in the determination of p, &,, and

d

&y can be made by taking the first partial derivatives of each of the un-
* * *

known parameters with respect to D , Tp , and TSK. Taking the derivatives

of Equation 6.7, 6.8, and 6.9, the following estimation of the errors is

obtained,

* - .
(A2B3 A3BZ) ATS“

d E *

p s

6.10

ok

33 _ A3AT*
E_ +CTP'E——‘L* + o

=..CD

°[B
-3
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ol B8 S ﬁ£+[1+d (‘zBaAaBz)JATs 611
I o DE * T E T=* d E T % :
d P p S
C —
, * * T - *
I Py g Biwt o AT OH T -G MR
) M-w. * * : o .
! Vi-a, o, LB E Tp E % E T
) s
‘ : *, %
; $[ Assume that the absolute values of the measurement errors, |AD /D |,

% & * *
iaTD /Tp | and IATS /T | are all less than or equal to some maximum possibi-

|

valu. of IAM/Ml. Then, for the worse case, when all the errors are added, the

maximuw . nossible errors in the determination of p, ¢y and «,, would be given

I T
by
j Loy 173 = - iy
' |p |l <5 ‘:ILD Byl + |ch Al + Joy @B, A3BZ)|] g | 6.13
] o
’ 4 17z +|c - |4
I | °‘d| <3 [icD By| + [ch A3[ + |1+, A5, A332)|]l M| 6.14
| bty 1 = < = = M
: I | =iz (128, B} + |2 ch A+ |2cTp A - 20, | |15 6.15
T

—

The quantities multiplying |A§—| on the right hand side of the

&

above equations represent, for a given IAM/Ml, the maximum error which is

s

associated with the shape and orientation of the satellite. That is, these
, quantities vary as a function of the cone half angle § and the orientation
{ of the satellite spin axis with respect to the orbit which is determined by
’E the angle X\. Using numerical methods, the term multiplyirg |AM/M| in Equa-
tion 6.15 was evaluated and the results are shown plotted in Figure 5.1 as

a function of )\ for varionus values of §.

A e

R,

Figurc 6.1 shows that some A-§ combinations are definitely better
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Figure 6.1. Maximum error in determining ./l-a,, using a cone-disk shaped
satellite as a function of A and 5.
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-
g than others. In fact, for some combinations the coefficient of iAM/Ml be-
% '*; comes large, implying that an experiment employing those \-§ combinations
? ce would not yield acceptable results, The A-§ combinations which give mini-
g ‘; mum possible error are, of course, the most desirable. Results similar to
i
% - those shown in Figure 6.1 were alsoc obtained foc the error estimates of p
§ - and @, The error in determining aT is directly related to the valve of L
% 'i as seen in Equation 6,15, As oy approaches zero, the error in the determina-
.. tion of % would become infinitely large. This is expected since for the
g - Maxwell model the value of oy de ermines the fraction of reflected force
% - which is dependent upon the parameter U Thus, as oy becomes small, the
g - effect of aT on the force and torque on the satellite is greatly dip ‘nished.
g A At oy = 0, the parameter %p becomes meaningless.
§ . The results shown in Figure 6.l were obtained using the coeffi-
g . cients of the j;' component of torque. Results were also obtained using
i 'r the i; component of torque. Results were obtained for a wide range of §
j " values for both cases. These results showed the following in general
5 s
’ .f 1. Utilization of measured values of the,j; component of
; .o torque give consistently lower values of maximum possible
i o error in the determination of p, 45 and aT, as compared
f ’f to the results obtained utilizing measurements of the ié
[
§ component of torque.
% : 2, Values of A greater than 45° give lower error when the
ne jé comporient of torque is utilized while values of A
«}
o less than 45° give lower error when the i; componenc of
:E torque is utilized.
=
i
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3. The error in determining «,, is significantly different for

T
using either the ié-or j;-component of torque. Use of the
ié-component of torque was found to consistently give maxi-
mum error values of at least an order of magnitude greater
than that obtained using the j;-component of torque.

The difference in possible accuracy between using either the i;—
component or the j;-component of torque is best explained by referring to
the numerical results given in Equations 5.27, 5.28, and 5.29. These equa-
tions show that the drag and the i;-component of torque are functionally
similar in their dependence on the unknown p, oy and Oy« The jé-component
of torque has, however, a func:ionally different dependence on the unknowns
than either the drag or slow down torque. Therefore, even though it is
possible to use either the i;- or j; - components of torque in an experiment,
use of the j;-component of torque is more desirable in terms of the accuracy
of the experiment.

The procedure just outlined can be used to find an optimum satel-
lite design for performing a gas-surface interaction and atmospheric density
experiment. In such an optimization study, factors such as size and weight
requirements, orbital regression effects, and others would be considered in
addition to the satellite ghape. Considering only § and A, however, the
cone-disk satellite was found to give a coefficient of |AM/M| in the range
of 3-5 for each of the error estimates in p, @y and aT. The inherent
accuracy of this experiment is then very good since the errors ian the measure-

ments |AM/M| could be made small depending upon the magnitude of the mea-

surable quantities and the measurement techniques employed. 1In addition, if
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measurements at one altitude could be correlated with those made at other
altitudes, the statistical error values could be made even lower. The cor-
relation of measurements made at different altitudes would require the use

of an assumed atmospheric density model. The magnitude of measurable quan-

ities in a satellite experiment is discussed in the next section.

6.3. Magnitudes of Measurable Quantities in a Satellite Experiment

>

In a satellite experiment such as described above, the quantities

% % %
D, Tp , and T would b: determined fron measurements made on the orbital
()

decay rate, the satellite precession rate and the satellite spin decay rate.

boed  B—d  Bed Beed Bt By

An estimate of the magnitudes of these rates can be determined from the ex-

ample results obtained for the cone-disk satellite,

*
Consider first the determination of D which contains the drag D.

bk b

For the case of circular orbits, assuming that the altitude losses due to

o s 4

i
i
; T drag effects are small, the decay rate of the orbital radius, ro, can be
-4 2
3 ; * approximated by the following expression given in Reference 1,
": P
A é ,I Aro 9
; : -2 -y .16
E i rev B Pay (ro)av 6
: ; :
f : :Z where B is the ballistic coefficient CDA/Zm, m is the mass of the satellite,
. ;
4 é Pay is the average atmospheric gas density at the average orbital radius L
|
f ! The mass m of the satellite is directly proportional to the demnsity Ps of the
J?; T material used tc construct the satellite, Let the proportionality be ex-
A ke

pressed as

; * —
:E m=p_ r,A 6.17

S

- *
:E where A is the reference area of the satellite and r, has units of length and

N




= -

t - ’

D B R R R P TR Ay v A e N Y
M A MM o S 1 1 Y] G S S PANINAT 5P 7 S, SRR

iy o Y,
oW DA T

e

L3

gy B vl

pan R oy

-

ey

is the proportionali factor determined by the design of the satellite.
Using Equation 6.17 a e definition of B, Equition 6.16 becomes, dropping

the "av" subscripts on p and T

b * Yo - PI,
-;rJrev = -D ——¢ = -2n Cp * 6.18
o psr: psr,

The convenient non-dimensional form of Equation 6.18 can also be
obtained for the precession rate and slow down rate of the satellite. For
high spin rates, the Luler equations for ihe dynamics of a spinning body

under the action of external torques reduce to

T,.,=I1.Qw,., 6.19
i 1 i
S S

T., = I.Qw, 6.20
j 1 i
S 8

where I1 is the moment of inertia about an axis perpendicular to the spin

axis, 12 is the moment of inercia about the spin axis, Q is the spin rate

and the terms w, s, Wi ts and W, ¢ represent the components of precession rate
s s s

of the spinning body. Assume for the purposes of the present study that the

satellite car be designed to be isc-inertial, I1 = 12, regardless of the

external shape. In terms of the notation of the preceding chapters, the

pre:ession rate w, ¢ is equal to A. Therefore, Equation 6.20 becomes
S

AN rev = 21 'T'i;/mlu,o 6.22

where w, is the angular velocity of the orbit. The terms in Equation 6.22

can be expressed as follows

Nt R R i = o

PP RN
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e 1 _2%=
Tl = CT. 2 p U°° Ar
s JS
Q=U K/r
and
U =r w
® o o

substituting for Ej” W, > and QQ into Equation 6.22, the following is obtained
s

—

C‘I‘j/ _
_ s Ar
AM/rev = 2u X P T, Tor

2

6.23
1

Similar to what was done for the drag case, assume that the moment of inertia
is proportional to the material density of the satellite, Pge Let

= X2 *
I1 =5 P Ar r, 6.24

N

* s

where r, has units of length and is the proportionality factor. The quan-
*

tity r, may or may not be equal to the similar term ry which was used for

the drag equations., Substituting Equation 6.24 in Equation 6.23, the follow-

ing is obtained

« T j oT
M /rev = rp = 21

6.25
*
per

In a similar fashion, the satellite spin decay rate is found to be

r, k; pr
Y * Zn K pr,»*
Pst3 ) s'3

(%Q/rev =T * 6.26
s

where the term r3* would be equal to r2* for an iso-inertial body.

Summarizing, the rates of change in the measurable quantities of a
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satellite expeiriment are found expressible in the following non-dimensional

forms.
Aro N
;——/rev = -2nCD e 6.27
o s 1
T,
_ Ja P T
AN/rev = 2 — —— 6.28
K pr,*
/ s 2
C
T, +
k pr
40 _ S_ o
Q rev = 2m X psr3* 6.29

The products psrl*, psrz*, and psr3s* are quantities which may be
controlled by the satellite design. In general, large solid satellites would
have psr* values which are large whereas light satellites would have small
values of psr*. In terms of orders of magnitude, an upper limit for a large
solid satellite would be in the order of 100 gm/cmz. A lower limit for psr*
could be 1072 gn/cm® for a thin walled hollow satellite.

The product p r, varies, of course, with the orbital altitude of
the satellite. Figure 6.2 shows the variation of p r  for a high, low, and
medium density at ysphere versus the orbital altitude h, where h=ro-re; r, =
(radius of Earth).

Using some representative values of C ., C , and C , which were

Tj: Tk/

obtained in the numerical studies of chapver 5 on the”cone-diskssatellite,
the plots given in Figures 6.3, 6.4, and 6.5 show how the measurable quan-
tities vary with altitude h, fov psr* =1, Figure 6.3 can also be inter-

preted in terms of AT/7, the rate of change in the period of the orbit. The

ra.e of change in period is related to the altitude decay rate by the
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High Density
Atmosphere .

Medium Density
Atmosphere .

Low Density
Atmosphere .
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Figure 6.2. High, low, and medium atmospheric density variation with
altitude (from tables in Reference 29).
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Figure 6.3. Relative average altitude loss per (circular) orbit for a

cone-disk satellite.
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Figure 6.4. Relative average angular precession of spin-axis of a cone-
disk satellite per (circular) orbit.
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Figure 6.5. Relative average spin decay of a corne disk satellite per
(circular) orbit.
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following equation,

Ar

At -3 _ o
- [rev = > T /rev 6.30

Q

The results shown in Figure 6.4 are given in terms of sec of arc/rev.

The results given “n Figures 6.3, 6.4, and 6.5, clearly illustrate
the feasibility of proposed experimental techniques in ta2rms of the magnitude
of measurable quantities. In fact, the measurements could all be made using
an optical technique such as that proposed by the Coordinateil Science Labora-
tory.lz’13 The advantage to an optical readout system is that the satellite
itself could be completely passive in that sunlight reflected off the surface
of the satellite can be used to determine the orientation of the spin axis
and thus be able to determine the precession rate of the satellite spin axis.
The technique proposed by CSL is fully described in the References 12 and 13.
The results of this extensive study made by CSL of the feasibility of the
optical readout technique indicate that precession rates of the order shown
in Figure 6.4 would be well within the capabilities of the optical technique.
Satellite spin rate data could be obtained directly from the observations of
reflected sunlight from the satellite., The optical technique is, of course,

a standard method of obtaining orbital drag data.

6.4. Assessment of Results Obtained From a Satellite Experiment

In the preceding discussions, a satellite experiment to determine
the paramete:s of the Maxwell model was studied mainly to illustrate its
feasibility. Hovever, the accuracy of the interpretation of the measdrements

depends upon how well the assumed model approximates the actual reflection

phenomena.
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In order to illustrate how, for a special case, erronevus result:
could be obtained, take an experiment in which the measurements are inter-
preted in terms of the parameters of the Maxwell model. As an extreme case
consider that the actual reflection process is a perfect backscatter. That
is, irrespective of the angle, 8§, at which the molecules impinge on the sur-
face, the molecules are always reflected back in the same direction, Perfect
backscatter is a type of reflection which cannot be approximated by the Max-
well model (or the Schamberg model either).

The procedure outlined for an experiment using a cone-disk satel-
lite would yield values of @45 aT’ and p for this extreme case of perfect

backscatter; however, it can be shown that o, and ,, would be equal to one

d T
and the gas-density would be twice its actual value.

The above example serves to illustrate the importance of inter-
preting the satellite measurements in terms of a model, such as the gen-
eralized model, which can cover a wide range of possible gas-surface inter-
actions. 1In the range of possible reflections between specular and diffuse,
the results of chapter 4 indicate that use of either the generalized model
or the Maxwell model could be expected to yield results which could reason-
ably approximate the actual reflection process. For the case of backscatter
or over specular reflectious, however, use of either the Maxwell or the
Schamberg model could not be expected to yield valid results on the gas
surface interaction parameters, The Nocilla model also could giv=exroneous
cesults if the actual distribution function were far from the drifting Max-

wellian assumed by Nocilla,

Solutions for the unknowns when the generalized model is used
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must be obtained using numerical methods since in general the resulting
equations are trigometric in the parameter Pj’ Trigometric equations can,
however, lead to multiple solutions for a given set of measurements. If
multiple solutions are obtained, ther additional experiments would have to
be periormed which are designed to detect the correct solution. It must be
concluded that, even considering the possibility of multiple solutions, the
use of the generalized model in the interpretation of satellite data is to
be favored over the use of a given particular model. More :pecific models
could be employed after the analysis using the generalized mcdel has indi-
cated the general character of the reflection process,

In order to illustrate the application of the generalized model,
consider a reflection which is assumed to be composed of three separate
beams; beam 1 (j=1) is in the backscatter direction (P1=2), beam 2 (j=2)
is normal to the surface (P2=1), and beam 3 (j=3) is in the specular
direction (P3=0) (see Figure 6.8). The effect on the drag of a body due
to a reflection of this type can be determined from the equations given
in section 4.3.1. For the values of Pj given above, the drag coefficient

for a flat plate, cylinder, cone and sphere are given by,

(CD)plate =sing_ (2 + chJl-al + 2 sin @ ozA/l-az
- 2 cos 29s 03/1—a3 6.31
= Moo + 0 ¢ Ao 4+ 2 « Ao
(CD)cylinder 2+ ZJYJl oll + Z o/l o‘2 + 3 Gle a3 6.32
) cone = 2 * 20p/l-ay + 2 sin § oyl-ay

- 2 cos 2§ 03\/1-&3 6.33
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Figure 6.6. Notation for a possible three-~lobed reflection.
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= - 4 1-
(CD)Sphere =7+ 2010q o, + 3 oz/h o, 6.34

These results serve to illustrate the statement made at the end of chapter 2

that the aerodynamic properties are specified by a choice of only two quan-
tities for each reflected beam; Pj and chETE;. The above equations show
that the quaantities Gj and Vﬁt;; alyays appear as the product in the ex-
pressions for aerodyramic properties and could therefore be considered as a
single parameter.

The results given in Equations 6.31, 6.32, 6.33, and 6.34 also
illuscrate that, without prior knowledge of either o, ox aj, only the quan-

titcies cf/l-dj could be determined in an experiment which utilizes measured

aerodynamic properties of convex shapes. In applicatica to satellite experi-

meants then, if uc assumptions are made on the distribution function c¢f re-
flected molecules (such assumptions are made in the Maxwell, Schamberg and
Nocilla models), the results of a satellite experiment using convex shapus
are limited to obtaining informetion on the number of reflected beam com-
S
ponents, the magnitude of each component, and the directicn of each compor
nent. This information, even though limited, would be sufficient to deter-
mine the aerodynamic drag, lift, 2nd torque properties of any convex shaped
body, spinning or non~spinning. Such information would also be utilized to
design future satellite experiments to obtain more refined information on
the gas surface interaction. Altbough such shapes are not considered in
this study, it is proposed that concave shapes could be utilized to obtain

v, .
information on the distributicn function of reflected molecules since the

aerodynamic properties of these shapes are dependent upon the properties of

reflected distribution.
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6.5, Significance of Satellite Experiments to Determine Gas-Surface Inter-

action Parameters and the Atmospheric Density

The examples given in this chapter have employed idealized con-
ditions such as circular orbits and constant density which wouid not be the
case in an actual experiment., As mentioncd in the introduction to this
chapter, a number of uncertainties are associated with satellite experi-
wents which can affect the interpretation of results. Two of the major un-
certainties have already been adequately discussed; the uncertainty associ-
ated with the atmospheric density was discussed in the introduction and the
uncertainties associated with the gas-surface ‘nteraction model has been
discussed in the preceding section. The significance of performing a satel-
lite experiment in light cf some additional uncertainties will be discussed
here. To be considered are uncertainties cencerning the condition of the
satellite surface (ie. degree of surface contamination by adsorbed gases,
composition ¢f surface-adsorbed gases, an! roughness of surface), composi-

tion of the atmusphere, and variation of atmospheric deusity with altitude.

6.5.1. Consideration of Surface Conditions

The zas-surface interaction is known to depend upon the degree
ano composition of adsorbed surfaces (see, for example, the experimental
results given in Reference 30) which, in the satellite environment, is not
well known. The satellite environment in some respects acts like a cleans-
ing environment in trat the very high vacuum combined with the effects of
high energy solar and cosmic rays tend to rid the surface of trapped gas

molecules. On the other hand, the constant bombardment of high velocity gas
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molecules as the satellite travels in its orbit causes the surface to again
be contaminated with trapped gas molecules. The cleansing and contaminating
processes take place continuously. The equilibrium conditions if reached
have not as yet been determined., This uncertainty enters the interpretation
of results when measurements made at one orbital altitude are correlated

to those made at other altitudes.

Instead of treating the surface conditions as uncertainties in the
experiment, it is suggested that a satellite experiment be designed to ob-
tain information on the uncertainties. One possible approach is to first
contaminate the satellite surface with a known contamination which would be
expected to degas at a known rate in the relative vacuum of the orbital en-
vironment. The degassing rate could then be correlated with the measured
rates of change in the aerodynamic properties of the satellite to determine
the effect of contamination on the gas-surface interaction. That such an
approach would be feasible is indicated first by the results obtained in
this chapter on the possible accuracy of a satellite experiment. Secondly,
in some preliminary studies perfcrmed by Cohen31, it was concluded that
contaminates such as water vapor on a metal surface could be expected to
degas down o l/e of the initial surface coverage in a time of about 5 to
10 weers. This rate of change estimate combined with the expected accuracy
of the satellite measurements indicates that such an experimenc may be
feasible.

The effects of other surface properties on the gas—surface inter-
action could also be studied by making accurate measurements of the aero-

dynamic properties as a function of time and then correlating the results
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with known variations of the envitonmental conditions. For example, for
satellites with long lifetimes, the satellite surface could be expected to
become rougher with time due to the bombardment of micrometeorites, dust
particles and high energy cosmic rays (see for example Reference 32).

The effect of the gas-surface interaction on surface roughness could then be
assessed by correlating changes in the satellite aerodynamic properties with
what is known about the roughening effects of the space environment., Data
from satellites which have changing, or controlled surface temperatures
could be utilized in a similar manner to obtain information on the effect

of surface temperature.

6.5.2. Consideration of the Composition of the Atmosphers

The composition of the earth's atmosphere is known to vary con-
siderably with altitude and solar activity (see for example Reference 29).
The average molecular weight at 1000 km, varies from 1.47 for a low-dencity
atmosphere to a wvalu. 15.04 for a high density atmosphere. At 300 km.
the variation is fron 16.89 to 22.46 for the low and high density atmo-
spheres. (Values of molecular weight obtained from Reference 29). As a
satellite orbit decays, then, the species of gas molecules which impinge
on the satellite surface will change in conceniration. The change in gas-
species concentration with altitude enters into the interpretation .f r--
sults when measurements made at one altitude are correlated to those made
at other altitudes., Two uncertainties are involved; the gas-surface inter-
action as a function of gas-species concentration and the concentration of

gas-species as a function of altitude.
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As with the uncertainties in surface conditions, it is proposed
here that the unce:taiinties in the atmospheric composition be considered un-
known and be determined bv satellite experiments. One possible approach is
to consider each species of gas separately. That is, instead of the average
density of the atmosphere, p, consider that the free stream density is com-
posed of a separate density, P> for each species where p = Zpi. In addi-
tion, for each species of gas, i, consider the gas-surface interaction to be
determined by parameters of the generalized model (chT:;;)i and (Pj)i' For
example, the drag of a non-spinning sphere would then be given by

4(1l-cos % (P.).)-
12 6.35
(Pj)i(lx-(Pj)i) ]JL

Jsphere here _ 3 p, {2+ (o /T-a,) [
% u, A i j i
Expressions such as Equation 6.31 could also be developed for other satellite
shapes. Then, using the same procedures as outlined earlier in this chapter,
it is proposed that the unknowns pi’(Pj>i’ and (chI:&;)i could be deter-
mined from measurements made on the aerodynamic properties of satellites,
Certainly for such a large number of unknowns, a single satellite experiment
would not provide sufficient information for the determinations. However, a
number of properly designed satellites could be utilized along with a care-
ful re-evaluation of past drag data to obtain a considerable amount of infor-
mation on the unknowns. The values of os could be correlated with models
of the variation in the composition of the atmosphere to determine which
model, ifﬁ;ny, gives th2 most consistent results. Such an analysis would

then provide information on both the atmospheric composition and the gas=

surface interaction as a function of gas-species.
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6.5.3. Variation of Atmospheric Density Models

In the determination of the atmospheric density, a model of the
relative variation of atmospheric density with altitude must be assumed.
Such a model must be utilized in the analysis of elliptic orbit’s and also
in correlating measurements made at one altitude with those made at other
altitudes. An error in the determination value of p is then introduced due
to the uncertainty associated with the assumed mbdel of the atmosphere.

As with the other uncertainties in a satellite experiment, it is
suggested that this uncertainty could also be removed by a number of
satellite experiments and re-evaluation of past drag data. The procedure
would be much the same as outlined in the previous section on atmospheric

composifion models.
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7. SUMMARY AND CONCLUSIONS

A generalized model of the gas-surface interaction was developed
to cover a wide range of possible interactions. This model was incorporated
into the aerodynamic equations of spinning convex bodies in a free molecule
flow in order to study fully the influence of the gas—surface interaction on
the aerodynamic properties of satellites in this flow regime.

Apzaliysis of the aerodynamic properties of four spinning bodies,
(disk, cylinder, cone, and sphere) at angles of attack revealed the strong
influence of the gas-surface interaction, especially on the torque properties.
The aerodynamic torque acting on a body in free molecular flow was found to
be caused by 1) the moment of drag and lift forces about the center of mass
of the body and 2) forces tangent to the surface induced by the spinning of
the body. Aerodynamic torques of the first type are experienced by both
spinning and non-spinning satellites and are well known. Aerodynamic torques
of the second type which are spin induced have comporents both parallel and
perpendicular to the spin axis of the body. The ccmporent o. -orque parallel
to the spin axis would cause the expected decay in the spin “te of a spin-
ning body. The components of torque perpendicular to the spin sxis would
cause a gyroscopic precession. The spin induced torque on a body was found
to be more strongly dependent on the gas-surface interaction than aerodynamic
torques of the first type.

Spin induced effects were also found in the aerodynamic drag and
lift properties of spinning bodies at angles of attack. 1In general, it was

found that spinning bodies experience higher values of drag and 1lift than do
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non-spinning todies. Also of interest is a lateral force experienced by
spinning bodies in free molecular flow which is entirely spin induced. The
spin induced lateral force was found to be also strongly dependent on the
gas—-surface interaction, as for the spin induced aerodynamic torques. The
aerodynamic, spin induced lateral force is analogous, but opposite in direc-
tion, to the Magnus effect on spinning bodies in viscous £flow.

The development of the generalized gas-surface interaction model
and the analysis of aerodynamic properties of spinning bodies formed the
basis for proposing satellite experiments to obtain information on the gas-
surface interaction as well as the orbital atmospheric density. Xt was
found that the average aerodynamic properties of spinning satellites are
strongly ;ependent on the parameters of a given gas-surface interaction model.
It is, therefore, proposed that the measured average aerodynamic properties
of spinning satellites be utilized to determine precise values of the gas~
surface interaction parameters and the orbital gas density. The preliminary
phase of the study of the feasibility of these satellite experiments was
conducted. This phase of the study covered 1) the consideration of schemes
utilizing the aerodynamic properties of satellites of various shapes and
orientations, Z) the assessment of the accuracy of determining the gas sur-
face~interaction parameters and the orbital gas density, 3) the estimate of
the magnitude of measurable quantitites in a satellite experiment, and &)
the investigation of the possible effects on accuracy introduced by uncertain-
ties in the space environment and satellite surface conditions. On the basis
of these results, it was established that the proposed satellite experiments

are feasible and could provide sigreficant information on both the gas-surface
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interaction at satellite velocities and the near-earth atmosphere.

l'ue to the considerable uncertainties associated with the gas-sur-
face interaction at satellite velocities, it was found that thé generalized
model of the gas-surface interaction is necessary in the interpretation of
results of the proposed satellite experiments. Since the aerodynamic pro-
perties of convex bodies in a free mol. flow are nst dependent on the spe-
cific form of the distribution of reflected molecules, gas-surface inter-
action models which incorporate a specific distribution function are not only
unnecessary but also undesirable in that considerable error can be introduced
in the interpretation of serodynamic measurements by using such models. For
this reason, the use of the generalized model developed in this study is pre-
ferred since no assumption was made on the distribution ol reflected molecules
other than the existance of an average velocity and direction. It was sug-
gested that the generalized model could also be applied to the interpretation
of results obtained from laboratory experiments in order to parameterize in.
a general manner the results of molecular beam studies. The parameterization
of these results would facilitate the comparison of the various results and
could serve as a basis for suggesting more precise gas-surface interaction
models. Laboratory experiments on gas-surface interaction which measure
forces and torques are particularly suitable in using the generalized mcdel
to interpret the results.

The study of feasibility of the satellite experiments proposed in
this study has been supported by the National Aeronautics ari Space Adminis-
tration at the George Marshall Space Flight Center. The aerodynamic pro-

perties of near-earth satellites are of major importance in determining both
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the lifetime of a satellite and the motion of the satellite about its center
of mass, Since NASA is planning in the future to orbit satellites of larger
size (such as manned space stations) and satellites requiring greater orien-
tation stability than satellites of the past, there is an urgzent need for
precise knowledge of the character of the gas-surface interaction and the
composition of the atmosphere in order to properly and econcmically design
these future satellites. For this reason, NASA is considering an extensive
experimental program called Project 0DYSSEY33’3A which is planned to obtain
information on the gas-surface interaction and the orbital environment by a
number of satellite experiments. The techniques of analysis developed and
the results obtained in this study have direct application to the design of
satellite experiments and the interpretation of results of these experiments,
as well as the interpretation of existing satellite data, with the objective
to obtain information on the gas-surface interaction and the atmospheric

composition.
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